Skip to main content

Advertisement

Log in

Influence of Nano-Sized Al2O3 Nanoparticles and Multipass FSW on Microstructure and Mechanical Characteristics of Dissimilar Welded Joints of AA6061 and AA5083

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present research fabricated a dissimilar friction stir welded joints of AA6161 and AA5083 by incorporating Nano-sized Al2O3 nanoparticles. The effect of multipass friction stir welding (FSW) on the dispersion pattern of Al2O3 nanoparticles and the impact of particles’ dispersion on microstructure and various mechanical characteristics was investigated. The results demonstrated that multi-pass FSW had significant impacts on the Al2O3 nanoparticles’ distribution. Furthermore, the dispersion pattern of Al2O3 nanoparticles in the stir zone strongly influenced the microstructure and mechanical characteristics. The results obtained from mechanical testing after a microstructural study corroborate multi-pass FSW. Tensile strength, strain rate, and micro-hardness of the Al2O3 reinforced joints of AA6061/AA5083 were improved after implementing multi-pass FSW. The improvement in the mechanical characteristics was observed via higher grain refinement by pinning effect and dynamic recrystallization by Al2O3 nanoparticles. The tensile strength after one, two and three FSW passes were observed to be 227.3, 257.4 and 272.7 MPa, with a % strain of 24.4, 26.8 and 30.7, respectively. Furthermore, the hardness value after 1 pass, 2 pass, and 3 pass FSW were 127.1, 136.4 and 145.7 HV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mishra, RS, Ma, ZY. Material Science and Engineering R 2005; 50: 1.

  2. Husain Mehdi, Mishra, RS. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2021; 11: 2531.

  3. Liu L, Ren D, Liu F (2014) Mater (Basel) 7:3735.

  4. Husain Mehdi, R.S. Mishra, Journal of Achievements in Materials and Manufacturing Engineering, 77, 31, (2016).

  5. D. Akbari, M. Farahani, and N. Soltani, J. Strain Anal. Eng. Des., vol.47, pp. 73, 2012

  6. Husain Mehdi, R.S. Mishra, Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG+FSP welding approach, Journal of Advanced Joining Processes, 1, 100003, (2020) https://doi.org/10.1016/j.jajp.2020.100003.

  7. A.Nait Salah, M. Kaddami, Husain Mehdi, Turkish Journal of Computer and Mathematics Education, 12, 1051 (2021).

  8. H. Mohammadzadeh Jamalian, M. Farahani, M. K. Besharati Givi, M. Aghaei Vafaei. Int J Adv Manuf Technol, In Press, 2015.

  9. Husain Mehdi, R.S. Mishra, Advances in Materials and Processing Technologies, 2020, https://doi.org/10.1080/2374068X.2020.1829952.

  10. S. Jain, N. Sharma, and R. Gupta, Dissimilar alloys (AA6082/AA5083) joining by FSW and parametric optimization using Taguchi, grey relational and weight method Engineering Solid Mechanics, pp. 51–66, 2018.

  11. Husain Mehdi, R.S. Mishra, Defence Technology, 17 (3), 715–727 (2021). https://doi.org/10.1016/j.dt.2020.04.014

  12. Saini, N., Pandey, C., Thapliyal, S. et al. Silicon 10, 1979(2018).

  13. Rejil CM, Dinaharan I, Vijay SJ, Murugan N. Mater Sci Eng A, 2012; 552: 336

  14. Liu, F., Li, Y., Sun, Z., Ji, Y. Journal of Materials Research and Technology, Volume 11,2021,Pages 1019.

  15. K.K. Chawla, Composite Materials: Science and Engineering, Springer Science & Business Media, Heidelberg, NY, 2012.

    Book  Google Scholar 

  16. J. Kaczmar, K. Pietrzak, W. Wlosinski, The production and application of metal matrix composite materials, J. Mater. Process. Technol. 106 (1) (2000) 58–67.

    Article  Google Scholar 

  17. S.C. Tjong, Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties, Adv. Eng. Mater. 9 (8) (2007) 639–652.

    Article  CAS  Google Scholar 

  18. M. Gupta, F.A. Mohamed, E.J. Lavernia, Solidification behaviour of Al-Li-SiCp MMCs processed using variable co-deposition of multi-phase materials, Mater. Manuf. Process. 5 (2) (1990) 165–196.

    Article  CAS  Google Scholar 

  19. Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Compos Sci Technol 2007;67:605.

  20. S. Gopalakrishnan, N. Murugan, Prediction of the tensile strength of friction stir welded aluminium matrix TiCp particulate reinforced composite, Mater. Des. 32 (2011) 462–467.

    Article  CAS  Google Scholar 

  21. T. Singh, S. K. Tiwari, and D. K. Shukla, Friction-stir welding of AA6061-T6: The effects of Al2O3 nano-particles addition Results in Materials, p. 100005, Aug. 2019, doi: https://doi.org/10.1016/j.rinma.2019.100005.

  22. M. Saeidi, M. Barmouz, and M. K. B. Givi, Investigation on AA5083/AA7075+Al2O3 Joint Fabricated by Friction Stir Welding: Characterizing Microstructure, Corrosion and Toughness Behavior. Materials Research, no. 6, pp. 1156–1162, Dec. 2015.

    Google Scholar 

  23. Husain Mehdi, R.S. Mishra, Journal of Adhesion Science and Technology, 2021, https://doi.org/10.1080/01694243.2021.1964846.

  24. Essam Moustafa, Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites, Materials, 10 (9), 1053-1069, 2017.

    Article  Google Scholar 

  25. W. Hoziefa, S. Toschi, M.M.Z. Ahmed, Al. Morri, A.A. Mahdy, M.M. El-Sayed Seleman, I. El-Mahallawi, L. Ceschini, A. Atlam, Materials & Design Volume 106, 273, 2016.

  26. Haddad, A., Benamor, A., Chiker, N. et al. Effect of heat treatment on microstructure and tribological behavior of friction stir processed Al2O3-reinforced AA2024-T351 matrix. Int J Adv Manuf Technol 115, 1671–1681 (2021). https://doi.org/https://doi.org/10.1007/s00170-021-07237-6

    Article  Google Scholar 

  27. Ahmadifard, S., Shahin, N., Vakili-Azghandi, M. et al. Microstructure, mechanical, and tribological properties of Al7075-T6/Ti3AlC2/Al2O3 surface hybrid nanocomposite produced by friction stir processing: A comparison of hybrid ratio. Int J Adv Manuf Technol 118, 2205–2220 (2022). https://doi.org/https://doi.org/10.1007/s00170-021-07997-1.

    Article  Google Scholar 

  28. H. Eskandari, R. Taheri, F. Khodabakhshi, Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: Microstructural developments and mechanical properties, Materials Science and Engineering: A Volume 660, 13 April 2016, 84-96.

    Article  CAS  Google Scholar 

  29. Shigematsu, I., Kwon, YJ., Suzuki, K. et al. Joining of 5083 and 6061 aluminum alloys by friction stir welding. Journal of Materials Science Letters 22, 353–356 (2003).

    Article  CAS  Google Scholar 

  30. Ghaffarpour M, Kazemi M, Mohammadi Sefat MJ, Aziz A, Dehghani K. Evaluation of dissimilar joints properties of 5083-H12 and 6061-T6 aluminum alloys produced by tungsten inert gas and friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 2017;231(3):297-308.

    Article  CAS  Google Scholar 

  31. Jain, S., & Mishra, R. S. (2021). Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering.

  32. El-Rayes, MM, El-Danaf, EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. Journal of Materials Processing Technology, Volume 212, Issue 5, 2012, Pages 1157-1168.

    Article  CAS  Google Scholar 

  33. Husain Mehdi, R.S. Mishra, SN Applied Science, 1, 712 (2019). https://doi.org/10.1007/s42452-019-0712-0.

  34. A.Nait Salaha, Husain Mehdi, Arshad Mehmood, Abdul Wahab Hashmid, Chandrabhanu Malla, Ravi Kumar, Materials Today: Proceedings, 56, 1675, 2021, https://doi.org/10.1016/j.matpr.2021.10.288.

  35. Sun YF, Fujii H. The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints. Mater Sci Eng A. 2011; 528: 5470–5.

    Article  CAS  Google Scholar 

  36. Husain Mehdi, Arshad Mehmood, Ajay Chinchkar, Abdul Wahab Hashmi, Chandrabhanu Malla, Prabhujit Mohapatra, Optimization of process parameters on the mechanical properties of AA6061/Al2O3 nanocomposites fabricated by multi-pass friction stir processing, Materials Today: Proceedings, 56 (4), 1995-2003, 2021, https://doi.org/https://doi.org/10.1016/j.matpr.2021.11.333.

    CAS  Google Scholar 

  37. Sarkari Khorrami, M.; Kazeminezhad, M.; Kokabi, A.H. Materials Science and Engineering: A, 602 (2014), 110.

  38. Mehdi, H, Mishra, RS. Effect of Friction Stir Processing on Mechanical Properties and Wear Resistance of Tungsten Inert Gas Welded Joint of Dissimilar Aluminum Alloys. Journal of Material Engineering and Performance 2021; 30: 1926–1937.

    Article  CAS  Google Scholar 

  39. N. Kumbhar, S. Sahoo, I. Samajdar, G. Dey, K. Bhanumurthy, Microstructure and microtextural studies of friction stir welded aluminium alloy 5052, Materials & Design 32(3) (2011) 1657-1666.

    Article  CAS  Google Scholar 

  40. Husain Mehdi, R.S. Mishra, Advances in Industrial and Manufacturing Engineering, 3, 100062 (2021). https://doi.org/10.1016/j.aime.2021.100062

  41. Abdellah Nait Salah, Sipokazi Mabuwa, Husain Mehdi, Velaphi Msomi, Mohammed Kaddami, Prabhujit Mohapatra, Silicon (2022). https://doi.org/10.1007/s12633-022-01717-4.

  42. Srivastava, M, Rathee, S, Siddiquee, AN, et al. Investigation on the Effects of Silicon Carbide and Cooling Medium during Multi-Pass FSP of Al-Mg/ SiC Surface Composites. Silicon 2019; 11: 2149–2157.

    Article  CAS  Google Scholar 

  43. Srivatsan T, Narendra N, Troxell J. Tensile deformation and fracture behavior of an oxide dispersion strengthened copper alloy. Mater Des 2000; 21:191–8.

    Article  CAS  Google Scholar 

  44. Sharma, DK, Patel, V, Badheka, V, et al. Fabrication of hybrid surface composites AA6061/(B 4 C+MoS ) via friction stir processing. J. Tribology 2019; 141: 52201–52210.

    Article  CAS  Google Scholar 

  45. Lloyd, DJ. Particle reinforced aluminum and magnesium matrix composites. International Materials Reviews 1994; 39: 1.

    Article  CAS  Google Scholar 

  46. Jamalian, HM, Ramezani, H, Ghobadi, H, Ansari, M, Yari, S, Givi, MKB, Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints, Journal of Manufacturing Processes, Volume 21,2016,Pages 180-189.

    Article  Google Scholar 

  47. Husain Mehdi, R.S. Mishra, Microstructure, and Analysis, 9, 403 (2020). https://doi.org/10.1007/s13632-020-00640-7

  48. Husain Mehdi, R.S. Mishra, Transactions of the Indian Institute of Metals, 73, 1773 (2020). https://doi.org/10.1007/s12666-020-01994-w

  49. Kumar, KS, Murigendrappa, SM, Kumar, H. Journal of Materials Research 2019; 455.

  50. Hashmi, A.W., Mehdi, H., Mabuwa, S. et al. Influence of FSP Parameters on Wear and Microstructural Characterization of Dissimilar TIG Welded Joints with Si-rich Filler Metal. Silicon (2022). https://doi.org/https://doi.org/10.1007/s12633-022-01848-8

    Google Scholar 

  51. Hashmi, A.W., Mehdi, H., Mishra, R.S. et al. Mechanical Properties and Microstructure Evolution of AA6082/Sic Nanocomposite Processed by Multi-Pass FSP. Transactions of the Indian Institute of Metals, (2022). https://doi.org/https://doi.org/10.1007/s12666-022-02582-w.

    Google Scholar 

  52. Ebrahimzadeh, V, Paidar, M, Safarkhanian, MA, et al. Orbital friction stir lap welding of AA5456-H321/AA5456-O aluminum alloys under varied parameters. Int. J. Adv. Manuf. Technol 2018. 96: 1237–1254.

    Article  Google Scholar 

  53. McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater 2008; 58: 349–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preety Rani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Mishra, R.S. Influence of Nano-Sized Al2O3 Nanoparticles and Multipass FSW on Microstructure and Mechanical Characteristics of Dissimilar Welded Joints of AA6061 and AA5083. Trans Indian Inst Met 75, 2817–2827 (2022). https://doi.org/10.1007/s12666-022-02655-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02655-w

Keywords

Navigation