Skip to main content
Log in

Evaluation and improvement of pearlite microstructure and mechanical properties in 45Cr4NiMoV and 50Cr5NiMoV steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of pearlite in 45Cr4NiMoV and 50Cr5NiMoV steels were studied and compared. The microstructural characteristics of pearlite of two steels were carefully examined by optical microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and the type, size and relative amount of extracted carbide particles were analyzed by X-ray diffraction and TEM coupled with selected area electron diffraction. The hardness, tensile property, impact and fracture toughness of pearlite of two steels were also evaluated. Besides, the carbide dissolution kinetics of 45Cr4NiMoV and 50Cr5NiMoV steels were clarified. The results indicated that the carbides in 50Cr5NiMoV steel exhibited higher dissolution temperature than those in 45Cr4NiMoV steel, which induced different morphologies of pearlite after eutectoid transformation. Compared to the pearlite with lamellar M23C6 carbides in 45Cr4NiMoV steel, the pearlite with the mixture of spheroidized M7C3 and lamellar M23C6 carbides in 50Cr5NiMoV steel possessed higher impact and plane-strain fracture toughness but lower hardness and strength, because different pearlite morphologies led to different mechanical properties. In order to further improve the comprehensive properties of the steels, the fraction of M7C3 for the material with acceptable properties was examined and dissolution kinetic of M7C3 was calculated. Therefore, the austenitizing temperature and holding time could be appropriately selected to keep enough undissolved M7C3 in the steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Tian, X.L. Hu, Z.D. Wang, J. Iron Steel Res. 18 (2006) 23–27.

    Google Scholar 

  2. P. Dou, S.F. Suo, Z.G. Yang, Y.G. Li, D.R. Chen, Wear 268 (2010) 302–308.

    Article  Google Scholar 

  3. M.F. Frolish, J.H. Beynon, Ironmak. Steelmak. 31 (2004) 300–304.

    Article  Google Scholar 

  4. H.N. He, J. Shao, X.C. Wang, Q.Y. Yang, L.D. Xu, Y.Z. Sun, J. Iron Steel Res. Int. 3 (2021) 279–290.

    Article  Google Scholar 

  5. X.F. Qin, D.L. Sun, L.Y. Xie, Q. Wu, Mater. Sci. Eng. A 600 (2014) 195–199.

    Article  Google Scholar 

  6. X.F. Qin, D.L. Sun, T. Wang, X.G. Zhao, L.Y. Xie, Q. Wu, J. Alloy. Compd. 640 (2015) 497–500.

    Article  Google Scholar 

  7. X.F. Qin, F. Li, X.G. Zhao, J. Fail. Anal. Prev. 17 (2017) 942–947.

    Article  Google Scholar 

  8. A. Akhbarizadeh, M.A. Golozar, A. Shafeie, M. Kholghy, J. Iron Steel Res. Int. 16 (2009) No. 6, 29–32.

    Article  Google Scholar 

  9. M.H. Shaeri, H. Saghafian, S.G. Shabestari, J. Iron Steel Res. Int. 17 (2010) No. 2, 53–58.

    Article  Google Scholar 

  10. X.B. Liu, G.L. Wu, C.Y. Zhou, J. Cent. South Univ. 23 (2016) 3065–3071.

    Article  Google Scholar 

  11. X.Y. Song, X.J. Zhang, L.C. Fu, H.B. Yang, K. Yang, L. Zhu, Mater. Sci. Eng. A 677 (2016) 465–473.

    Article  Google Scholar 

  12. S. Behera, R.K. Barik, M.B. Sk, R. Mitra, D. Chakrabati, Mater. Sci. Eng. A 764 (2019) 138256.

    Article  Google Scholar 

  13. S.T. Zhou, Z.D. Li, C.F. Yang, S.K. Xie, Q.L. Yong, Mater. Sci. Eng. A 761 (2019) 138036.

    Article  Google Scholar 

  14. H. Yang, S. Kim, Mater. Sci. Eng. A 319–321 (2001) 316–320.

    Article  Google Scholar 

  15. K.C. Hwang, S. Lee, H.C. Lee, Mater. Sci. Eng. A 254 (1998) 296–304.

    Article  Google Scholar 

  16. M. Rüssel, L. Krüger, S. Martin, W. Kreuzer, Eng. Fract. Mech. 99 (2013) 278–294.

    Article  Google Scholar 

  17. N.V. Luzginova, L. Zhao, J. Sietsma, Mater. Sci. Eng. A 448 (2007) 104–110.

    Article  Google Scholar 

  18. J.D. Verhoeven, Metall. Mater. Trans. A 31 (2000) 2431–2438.

    Article  Google Scholar 

  19. E.L. Brown, G. Krauss, Metall. Trans. A 17 (1986) 31–36.

    Article  Google Scholar 

  20. N.V. Luzginoval, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 39 (2008) 513–521.

    Article  Google Scholar 

  21. G. Spanos, M.V. Kral, Int. Mater. Rev. 54 (2009) 19–47.

    Article  Google Scholar 

  22. Y.L. Tian, R.W. Kraft, Metall. Trans. A 18 (1987) 1359–1369.

    Article  Google Scholar 

  23. Y.L. Tian, R.W. Kraft, Metall. Trans. A 18 (1987) 1403–1414.

    Article  Google Scholar 

  24. D.V. Shtansky, K. Nakai, Y. Ohmori, Z. Metallkd. 90 (1999) 25–37.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Ye-qun Liu (Institute of Coal Chemistry, China Academy of Sciences, Taiyuan) for his help in TEM observation. This work was financially supported by the Major Science and Technology Program of Heilongjiang Province (Grant No. 2019ZX10A02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-jiao Zhang or Lin Zhu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Kq., Zhang, Xj., Song, Xy. et al. Evaluation and improvement of pearlite microstructure and mechanical properties in 45Cr4NiMoV and 50Cr5NiMoV steels. J. Iron Steel Res. Int. 29, 1995–2005 (2022). https://doi.org/10.1007/s42243-022-00799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00799-z

Keywords

Navigation