Skip to main content

Advertisement

Log in

Finite deformations of a nonlinearly elastic electrosensitive tube reinforced by two fiber families

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this paper, the theory of nonlinear electroelasticity is used to examine deformations of a dielectric elastomer tube, reinforced by two families of helical fibers with different angles, with closed ends and compliant electrodes on its side surfaces. To illustrate the behavior of the fiber-reinforced tube, a specific form of electroelastic energy function is used for numerical purposes. Numerical dependences of the deformation on the non-dimensional potential difference between electrodes are obtained for the considered energy function. The influence of fiber stiffness and their angles on a response of the tube are analyzed. The presented theory and results may be of value in the development of soft robots and actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilhelm Conrad Röntgen: Ueber die durch electricität bewirkten form-und volumenänderungen von dielectrischen körpern. Annalen der Physik 247(13), 771–786 (1880)

    Article  Google Scholar 

  2. Quincke, G.: IV. On electrical expansion. Lond. Edinb. Dublin Philos. Mag. J. Sci. 10(59), 30–39 (1880)

    Article  Google Scholar 

  3. Romasanta, L.J., López-Manchado, M.A., Verdejo, R.: Increasing the performance of dielectric elastomer actuators: a review from the materials perspective. Progr. Polym. Sci. 51, 188–211 (2015)

    Article  Google Scholar 

  4. Guo-Ying, G., Zhu, J., Zhu, L.-M., Zhu, X.: A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomimetics 12(1), 011003 (2017)

    Article  ADS  Google Scholar 

  5. Gupta, U., Qin, L., Wang, Y., Godaba, H., Zhu, J.: Soft robots based on dielectric elastomer actuators: a review. Smart Mater. Struct. 28(10), 103002 (2019)

    Article  ADS  Google Scholar 

  6. Loew, P., Brill, M., Rizzello, G., Seelecke, S.: Development of a nonintrusive pressure sensor for polymer tubes based on dielectric elastomer membranes. Sens. Actuators A Phys. 292, 1–10 (2019)

    Article  Google Scholar 

  7. Jiang, Y.: Modeling of a diaphragm-type viscoelastic dielectric elastomer energy transducer. Contin. Mech. Thermodyn. 32(6), 1695–1711 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  8. Lu, T., Ma, C., Wang, T.: Mechanics of dielectric elastomer structures: a review. Extreme Mech. Lett. 38, 100752 (2020)

    Article  Google Scholar 

  9. Mao, Z., Nagaoka, T., Yokota, S., Kim, J.: Soft fiber-reinforced bending finger with three chambers actuated by ECF (electro-conjugate fluid) pumps. Sens. Actuators A Phys. 310, 112034 (2020)

    Article  Google Scholar 

  10. Sideris, E.A., de Lange, H.C.: Pumps operated by solid-state electromechanical smart material actuators—a review. Sens. Actuators A Phys. 307, 111915 (2020)

    Article  Google Scholar 

  11. Alibakhshi, A., Dastjerdi, S., Malikan, M., Eremeyev, V.A.: Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy. Contin. Mech. Thermodyn. (2022)

  12. Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 549–578 (2010)

    Article  Google Scholar 

  13. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Zhu, J., Stoyanov, H., Kofod, G., Suo, Z.: Large deformation and electromechanical instability of a dielectric elastomer tube actuator. J. Appl. Phys. 108(7), 074113 (2010)

    Article  ADS  Google Scholar 

  15. Zhou, J., Jiang, L., Khayat, R.E.: Electromechanical response and failure modes of a dielectric elastomer tube actuator with boundary constraints. Smart Mater. Struct. 23(4), 045028 (2014)

    Article  ADS  Google Scholar 

  16. An, L., Wang, F., Cheng, S., Lu, T., Wang, T.J.: Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 24(3), 035006 (2015)

    Article  ADS  Google Scholar 

  17. Melnikov, A., Ogden, R.W.: Finite deformations of an electroelastic circular cylindrical tube. Zeitschrift für angewandte Mathematik und Physik 67(6), 140 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  18. Cohen, N.: Stacked dielectric tubes with electromechanically controlled radii. Int. J. Solids Struct. 108, 40–48 (2017)

    Article  Google Scholar 

  19. Son, S., Goulbourne, N.C.: Dynamic response of tubular dielectric elastomer transducers. Int. J. Solids Struct. 47(20), 2672–2679 (2010)

    Article  Google Scholar 

  20. Kovacs, G., Düring, L., Michel, S., Terrasi, G.: Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuators A Phys. 155(2), 299–307 (2009)

    Article  Google Scholar 

  21. Carpi, F., Migliore, A., Serra, G., De Rossi, D.: Helical dielectric elastomer actuators. Smart Mater. Struct. 14(6), 1210 (2005)

    Article  ADS  Google Scholar 

  22. Bazaev, K., Cohen, N.: Electrically-induced twist in geometrically incompatible dielectric elastomer tubes. Int. J. Solids Struct. 111707 (2022)

  23. Daerden, F., Lefeber, D., et al.: Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  24. Connolly, F., Panagiotis, P., Conor, J.W., Katia, B.: Mechanical programming of soft actuators by varying fiber angle. Soft Robot. 2(1), 26–32 (2015)

    Article  Google Scholar 

  25. Chou, C.-P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  26. Goriely, A., Tabor, M.: Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes. Proc. R. Soc. A 469(2153), 20130011 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  27. Singh, R., Kumar, S., Kumar, A.: Effect of intrinsic twist and orthotropy on extension-twist-inflation coupling in compressible circular tubes. J. Elast. 128(2), 175–201 (2017)

    Article  MathSciNet  Google Scholar 

  28. Singh, R., Singh, P., Kumar, A.: Unusual extension–torsion–inflation couplings in pressurized thin circular tubes with helical anisotropy. Math. Mech. Solids 24(9), 2694–2712 (2019)

    Article  MathSciNet  Google Scholar 

  29. Emuna, N., Cohen, N.: Inflation-induced twist in geometrically incompatible isotropic tubes. J. Appl. Mech. 88(3), 031005 (2021)

    Article  ADS  Google Scholar 

  30. Lurie, A.I.: Nonlinear Theory of Elasticity. Elsevier, Amsterdam (1990)

    MATH  Google Scholar 

  31. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997)

    Article  MathSciNet  Google Scholar 

  32. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40(2–3), 213–227 (2005)

    Article  ADS  Google Scholar 

  33. Goulbourne, N.C.: A mathematical model for cylindrical, fiber reinforced electro-pneumatic actuators. Int. J. Solids Struct. 46(5), 1043–1052 (2009)

    Article  Google Scholar 

  34. Son, S., Goulbourne, N.C.: Finite deformations of tubular dielectric elastomer sensors. J. Intell. Mater. Syst. Struct. 20(18), 2187–2199 (2009)

    Article  Google Scholar 

  35. Yong, H., He, X., Zhou, Y.: Dynamics of a thick-walled dielectric elastomer spherical shell. Int. J. Eng. Sci. 49(8), 792–800 (2011)

    Article  Google Scholar 

  36. He, L., Lou, J., Jianke, D., Huaping, W.: Voltage-induced torsion of a fiber-reinforced tubular dielectric elastomer actuator. Compos. Sci. Technol. 140, 106–115 (2017)

    Article  Google Scholar 

  37. Morteza, H.S., Pedro, P.C.: Constitutive models for anisotropic dielectric elastomer composites: finite deformation response and instabilities. Mech. Res. Commun. 96, 75–86 (2019)

    Article  Google Scholar 

  38. Sharma, A.K., Joglekar, M.M.: A numerical framework for modeling anisotropic dielectric elastomers. Comput. Methods Appl. Mech. Eng. 344, 402–420 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  39. Ahmadi, A., Asgari, M.: Nonlinear coupled electro-mechanical behavior of a novel anisotropic fiber-reinforced dielectric elastomer. Int. J. Non-Linear Mech. 119, 103364 (2020)

    Article  ADS  Google Scholar 

  40. Saxena, S., Diogo, B.D., Kumar, A.: Extension–torsion–inflation coupling in compressible electroelastomeric thin tubes. Math. Mech. Solids 25(3), 644–663 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey M. Kolesnikov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 8, 9, 10, 11, 12, and 13.

Fig. 8
figure 8

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 5\) and \(\Phi _1 = 0, \pi /16, \pi /8\)

Fig. 9
figure 9

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 5\) and \(\Phi _1 = 3 \pi /16, \pi /4, 5\pi /16\)

Fig. 10
figure 10

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 5\) and \(\Phi _1 = 3 \pi /8, 7 \pi /16, \pi /2\)

Fig. 11
figure 11

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 100\) and \(\Phi _1 = 0, \pi /16, \pi /8\)

Fig. 12
figure 12

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 100\) and \(\Phi _1 = 3 \pi /16, \pi /4, 5\pi /16\)

Fig. 13
figure 13

Plots of the dimensionless external radius \(b^*\), the dimensionless thickness \(h^*\), the twist angle \(\psi \) and the axial extension \(\lambda _z\) versus the dimensionless potential \(E_0^*\) for \(\gamma = 100\) and \(\Phi _1 = 3 \pi /8, 7 \pi /16, \pi /2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.M. Finite deformations of a nonlinearly elastic electrosensitive tube reinforced by two fiber families. Continuum Mech. Thermodyn. 34, 1237–1255 (2022). https://doi.org/10.1007/s00161-022-01118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01118-3

Keywords

Navigation