Skip to main content
Log in

Note about string theory with deformed dispersion relations

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The goal of this short paper is to find Lagrangian for bosonic string with deformed dispersion relation proposed by J. Magueijo and L. Smolin in 2004. We also show that in the preferred case \(f=g\) this Lagrangian reduces into Nambu-Gotto form of relativistic string without modification of the dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study

Notes

  1. See also [4,5,6, 16, 17].

  2. We introduced the vector \(K^M\) in order to deal with covariant prescription that could simplify calculations and hence we can set \(K^M\) to be equal \(\delta ^M_0\) in the end. In other words, \(K^M\) is not related to any possible Killing vectors of the background metric.

  3. More generally we could consider situation when \(f=Dg\) where D is constant. Then (17) implies that B is equal to zero and (16) reduces to Nambu-Gotto action with prefactor \(\sqrt{D}\) that could be eliminated by appropriate rescaling of \(x^\mu \) coordinates.

References

  1. Amelino-Camelia, G.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255–263 (2001). https://doi.org/10.1016/S0370-2693(01)00506-8. [arXiv:hep-th/0012238 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  2. Amelino-Camelia, G., Piran, T.: Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes. Phys. Rev. D 64, 036005 (2001). https://doi.org/10.1103/PhysRevD.64.036005. [arXiv:astro-ph/0008107 [astro-ph]]

    Article  ADS  Google Scholar 

  3. Biermann, P., Sigl, G.: Introduction to cosmic rays. Lect. Notes Phys. 576, 1–26 (2001). [arXiv:astro-ph/0202425 [astro-ph]]

    Article  ADS  Google Scholar 

  4. Deriglazov, A.A.: Doubly special relativity in position space starting from the conformal group. Phys. Lett. B 603, 124–129 (2004). https://doi.org/10.1016/j.physletb.2004.10.024. [arXiv:hep-th/0409232 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ghosh, S.: A Lagrangian for DSR Particle and the Role of Noncommutativity. Phys. Rev. D 74, 084019 (2006). https://doi.org/10.1103/PhysRevD.74.084019. [arXiv:hep-th/0608206 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  6. Ghosh, S.: DSR relativistic particle in a Lagrangian formulation and non-commutative spacetime: A gauge independent analysis. Phys. Lett. B 648, 262–265 (2007). https://doi.org/10.1016/j.physletb.2007.03.016. [arXiv:hep-th/0602009 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Girelli, F., Konopka, T., Kowalski-Glikman, J., Livine, E.R.: The Free particle in deformed special relativity. Phys. Rev. D 73, 045009 (2006). https://doi.org/10.1103/PhysRevD.73.045009. [arXiv:hep-th/0512107 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  8. Girelli, F., Liberati, S., Sindoni, L.: Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 75, 064015 (2007). https://doi.org/10.1103/PhysRevD.75.064015. [arXiv:gr-qc/0611024 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  9. Kowalski-Glikman, J.: Doubly special relativity: Facts and prospects. [arXiv:gr-qc/0603022 [gr-qc]]

  10. Kowalski-Glikman, J.: Observer independent quantum of mass. Phys. Lett. A 286, 391–394 (2001). https://doi.org/10.1016/S0375-9601(01)00465-0. [arXiv:hep-th/0102098 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kowalski-Glikman, J.: Introduction to doubly special relativity. Lect. Notes Phys. 669, 131–159 (2005). https://doi.org/10.1007/11377306_5. [arXiv:hep-th/0405273 [hep-th]]

    Article  ADS  Google Scholar 

  12. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002). https://doi.org/10.1103/PhysRevLett.88.190403. [arXiv:hep-th/0112090 [hep-th]]

    Article  ADS  Google Scholar 

  13. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003). https://doi.org/10.1103/PhysRevD.67.044017. [arXiv:gr-qc/0207085 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  14. Magueijo, J., Smolin, L.: String theories with deformed energy momentum relations, and a possible nontachyonic bosonic string. Phys. Rev. D 71, 026010 (2005). https://doi.org/10.1103/PhysRevD.71.026010. [arXiv:hep-th/0401087 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  15. Mignemi, S.: Transformations of coordinates and Hamiltonian formalism in deformed special relativity. Phys. Rev. D 68, 065029 (2003). https://doi.org/10.1103/PhysRevD.68.065029. [arXiv:gr-qc/0304029 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  16. Pramanik, S., Ghosh, S.: GUP-based and Snyder Non-Commutative Algebras, Relativistic Particle models and Deformed Symmetries and Interaction: A Unified Approach. Int. J. Mod. Phys. A 28(27), 1350131 (2013). https://doi.org/10.1142/S0217751X13501315. [arXiv:1301.4042 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  17. Pramanik, S., Ghosh, S., Pal, P.: Electrodynamics of a generalized charged particle in doubly special relativity framework. Annals Phys. 346, 113–128 (2014). https://doi.org/10.1016/j.aop.2014.04.009. [arXiv:1212.6881 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Takeda, M., Hayashida, N., Honda, K., Inoue, N., Kadota, K., Kakimoto, F., Kamata, K., Kawaguchi, S., Kawasaki, Y., Kawasumi, N., et al.: Small-scale anisotropy of cosmic rays above \(10^19ev\) observed with the akeno giant air shower array. Astrophys. J. 522, 225–237 (1999). https://doi.org/10.1086/307646. [arXiv:astro-ph/9902239 [astro-ph]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the grant “Integrable Deformations” (GA20-04800S) from the Czech Science Foundation (GACR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klusoň.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klusoň, J. Note about string theory with deformed dispersion relations. Gen Relativ Gravit 54, 61 (2022). https://doi.org/10.1007/s10714-022-02945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02945-0

Keywords

Navigation