Skip to main content
Log in

Synthesizing AlN Coatings Using Suspension Plasma Spraying: Effect of Promotional Additives and Aluminum Powder Particle Size

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN) coatings have been considered for corrosion-resistant materials applicable to the aluminum (Al) industry where the AlN comes in direct contact with molten Al above 933 K. AlN coatings were synthesized by suspension plasma spray (SPS) technology using Al powder mixed with melamine suspended in hexadecane. The use of fine Al (1-5 µm) particles did not yield more than 10% AlN in the coatings. Mixing the Al powder with promotional additives such as B, BN, Mo, Y2O3, AlN, or Al4C3 solves the fine particle agglomeration and stimulates the formation of AlN in the coatings which enhances their corrosion resistance. The optimum amount of AlN promoter was 0.22 wt.% of the total suspension mass, producing up to 72% AlN in the coating as determined by Rietveld quantitative analysis (RQA) using x-ray diffraction (XRD). Another way to improve the AlN formation in the coating by post-deposition nitridation and also solve fine Al particle agglomeration is to use a wide particle size distribution of Al, with the optimum ratio being 3:1, that is, (1-5 µm):(17-35 µm). XRD analysis indicated that the coating exhibited up to 80% AlN. The coatings Vickers hardness is related to their AlN content reaching 1644 Hv (80% AlN). The coatings were tested for corrosion resistance by direct contact with molten Al-5 wt.%Mg alloy at 1123 K and found to be stable. Ab initio Born–Oppenheimer molecular dynamics (BOMD) simulation predicted these experimental results. Indeed at 1200 K, molten Al and AlN exhibit weak van der Waals interactions. The AlN(s)-Al(l) interfacial energy was calculated to be 18.2 kJ mol−1 for hexagonal AlN phase and 56.4 kJ mol−1 for cubic AlN, which means that it lies within the physisorption regime, and therefore, no reaction occurs between Al(l) and AlN(s) which confirms non-wetting application in the Al industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. M.P. Thompson, G.W. Auner, T.S. Zheleva, K.A. Jones, S.J. Simko and J.N. Hilfiker, Deposition Factors and Band Gap of Zinc-Blende AIN, J. Appl. Phys., 2001, 89(6), p 3331-3336

    Article  CAS  Google Scholar 

  2. M. Yamada, H. Nakamura, T. Yasui, M. Fukumoto and K. Takahashi, Influence of Substrate Materials upon Fabrication of Aluminum Nitride Coatings by Reactive RF Plasma Spraying, Mater. Trans., 2006, 47(7), p 1671-1676. https://doi.org/10.2320/matertrans.47.1671

    Article  CAS  Google Scholar 

  3. S.M. Oh and D.W. Park, Preparation of AlN Fine Powder by Thermal Plasma Processing, Thin Solid Films, 1998, 316(1-2), p 189-194

    Article  CAS  Google Scholar 

  4. M.-C. Sung, Y.-M. Kuo, L.-T. Hsieh and C.-H. Tsai, Two-Stage Plasma Nitridation Approach for Rapidly Synthesizing Aluminum Nitride Powders, J. Mater. Res., 2017, 32(07), p 1279-1286. https://doi.org/10.1557/jmr.2016.505

    Article  CAS  Google Scholar 

  5. K. Kim, Plasma Synthesis and Characterization of Nanocrystalline Aluminum Nitride Particles by Aluminum Plasma Jet Discharge, J. Cryst. Growth, 2005, 283(3-4), p 540-546

    Article  CAS  Google Scholar 

  6. B. Li, B. Wen, H. Chen, W. Zhang, X. Meng, M. Jia and F. Chen, Corrosion Behaviour and Related Mechanism of Lithium Vapour on Aluminium Nitride Ceramic, Corros. Sci., 2021, 178, p 109058. https://doi.org/10.1016/j.corsci.2020.109058

    Article  CAS  Google Scholar 

  7. S. Pradhan, S.K. Jena, S.C. Patnaik, P.K. Swain and J. Majhi, Wear Characteristics of Al-AlN Composites Produced in Situ by Nitrogenation, IOP Conf. Ser. Mater. Sci. Eng., 2015, 75(1), p 012034

    Article  Google Scholar 

  8. P. Fauchais and A. Vardelle, Solution and Suspension Plasma Spraying of Nanostructure Coatings, Advanced Plasma Spray Applications. H.S. Jazi Ed., BoD—Books on Demand, Norderstedt, 2012, p 149-188

    Google Scholar 

  9. J. Cao, Y. Liu and X.S. Ning, Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study, Materials (Basel), 2018, 11(5), p 1-10

    Article  Google Scholar 

  10. N.Y. Taranets and Y.V. Naidich, Wettability of Aluminum Nitride by Molten Metals, Powder Metall. Met. Ceram., 1996, 35, p 282-285. https://doi.org/10.1007/BF01328834

    Article  Google Scholar 

  11. T.B. Jackson, A.V. Virkar, K.L. More, R.B. Dinwiddie and R.A. Cutler, High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors, J. Am. Ceram. Soc., 1997, 80(6), p 1421-1435

    Article  CAS  Google Scholar 

  12. X.-X. Mao, J. Li, H.-L. Zhang, Y.-G. Xu and S.-W. Wang, Synthesis of AlN Powder by Carbothermal Reduction-Nitridation of Alumina/Carbon Black Foam, J. Ceram. Soc. Jpn., 2017, 32(10), p 377-382

    Google Scholar 

  13. A.C. Da Cruz and R.J. Munz, Review on the Vapour-Phase Synthesis of Aluminum Nitride Powder Using Thermal Plasmas, KONA Powder Part. J., 1999, 17, p 85-94

    Article  Google Scholar 

  14. T.-H. Kim, S. Choi and D.-W. Park, Effects of NH3 Flow Rate on the Thermal Plasma Synthesis of AlN Nanoparticles, J. Korean Phys. Soc., 2013, 63(10), p 1864-1870. https://doi.org/10.3938/jkps.63.1864

    Article  CAS  Google Scholar 

  15. J. Ahn, Y. Kim, J. Lee and D. Kim, Synthesis of AlN Particles by Chemical Route for Theral Interface Material, Adv. Mater. Lett., 2017, 8(9), p 939-943. https://doi.org/10.5185/amlett.2017.1666

    Article  CAS  Google Scholar 

  16. J. Ahn, D. Kim, Y. Kim and J. Lee, Synthesis of AlN Particles by Microwave-Assisted Urea Route, Appl. Mech. Mater., 2016, 851, p 191-195. https://doi.org/10.4028/www.scientific.net/AMM.851.191

    Article  Google Scholar 

  17. K. Sardar and C.N.R. Rao, AlN Nanocrystals by New Chemical Routes, Solid State Sci., 2005, 7(2), p 217-220

    Article  CAS  Google Scholar 

  18. C. Grigoriu, M. Hirai, K. Nishiura, W. Jiang and K. Yatsui, Synthesis of Nanosized Aluminum Nitride Powders by Pulsed Laser Ablation, J. Am. Ceram. Soc., 2000, 83(10), p 2631-2633. https://doi.org/10.1111/j.1151-2916.2000.tb01604.x

    Article  CAS  Google Scholar 

  19. S.A. Rounaghi, D.E.P. Vanpoucke, H. Eshghi, S. Scudino, E. Esmaeili, S. Oswald and J. Eckert, A Combined Experimental and Theoretical Investigation of the Al-Melamine Reactive Milling System: A Mechanistic Study towards AlN-Based Ceramics, J. Alloys Compd., 2017, 729, p 240-248. https://doi.org/10.1016/j.jallcom.2017.09.168

    Article  CAS  Google Scholar 

  20. J. Zheng, Y. Yang, B. Yu, X. Song and X. Li, [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties, ACS Nano, 2008, 2(1), p 134-142

    Article  CAS  Google Scholar 

  21. D. Chen, J. Colas, F. Mercier, R. Boichot, L. Charpentier, C. Escape, M. Balat-Pichelin and M. Pons, High Temperature Properties of AlN Coatings Deposited by Chemical Vapor Deposition for Solar Central Receivers, Surf. Coat. Technol., 2019, 377(July), p 124872. https://doi.org/10.1016/j.surfcoat.2019.07.083

    Article  CAS  Google Scholar 

  22. M. Iwata, K. Adachi, S. Furukawa and T. Amakawa, Synthesis of Purified AlN Nano Powder by Transferred Type Arc Plasma, J. Phys. D Appl. Phys., 2004, 37(7), p 1041-1047

    Article  CAS  Google Scholar 

  23. R.K. Choudhary, P. Mishra and R.C. Hubli, Optical Properties of Cubic AlN Films Grown by Sputtering, Surf. Eng., 2016, 32(4), p 304-306

    Article  CAS  Google Scholar 

  24. A. Metel, S. Grigoriev, M. Volosova, Y. Melnik and E. Mustafaev, Synthesis of Aluminum Nitride Coatings Assisted by Fast Argon Atoms in a Magnetron Sputtering System with a Separate Input of Argon and Nitrogen, Surf. Coat. Technol., 2020, 398(April), p 126078. https://doi.org/10.1016/j.surfcoat.2020.126078

    Article  CAS  Google Scholar 

  25. M.M. Mazur, S.A. Pianaro, K.F. Portella, P. Mengarda, M.D.O.G.P. Bragança, S. Ribeiro Junior, J.S. Santos de Melo and D.P. Cerqueira, Deposition and Characterization of AlN Thin Films on Ceramic Electric Insulators Using Pulsed DC Magnetron Sputtering, Surf. Coat. Technol., 2015, 284, p 247-251. https://doi.org/10.1016/j.surfcoat.2015.06.082

    Article  CAS  Google Scholar 

  26. I. Musa, N. Qamhieh, K. Said, S.T. Mahmoud and H. Alawadhi, Fabrication and Characterization of Aluminum Nitride Nanoparticles by RF Magnetron Sputtering and Inert Gas Condensation Technique, Coatings, 2020, 10(4), p 411

    Article  CAS  Google Scholar 

  27. F. Barandehfard, J. Aluha and F. Gitzhofer, Synthesis of Cubic Aluminum Nitride (AlN) Coatings Through Suspension Plasma Spray (SPS) Technology, Coatings, 2021, 11, p 500. https://doi.org/10.3390/coatings11050500

    Article  CAS  Google Scholar 

  28. V.S. Kudyakova, R.A. Shishkin, A.A. Elagin, M.V. Baranov and A.R. Beketov, Aluminium Nitride Cubic Modifications Synthesis Methods and Its Features. Review, J. Eur. Ceram. Soc., 2017, 37, p 1143-1156. https://doi.org/10.1016/j.jeurceramsoc.2016.11.051

    Article  CAS  Google Scholar 

  29. K.-I. Kim, S.-C. Choi, J.-H. Kim, W.-S. Cho, K.-T. Hwang and K.-S. Han, Synthesis and Characterization of High-Purity Aluminum Nitride Nanopowder by RF Induction Thermal Plasma, Ceram. Int., 2014, 40(6), p 8117-8123. https://doi.org/10.1016/j.ceramint.2014.01.006

    Article  CAS  Google Scholar 

  30. M. Shahien, M. Yamada, T. Yasui and M. Fukumoto, N2 and H2 Plasma Gasses’ Effects in Reactive Plasma Spraying of Al2O3 Powder, Surf. Coat. Technol., 2013, 216, p 308-317

    Article  CAS  Google Scholar 

  31. N. Venkatramani, Industrial Plasma Torches and Applications, Curr. Sci., 2002, 83(3), p 254-262

    Google Scholar 

  32. T. Kim, S. Choi, and D. Park, Chemical Reaction Considered Numerical Simulation on Preparation of AlN Nano Powder by Non-transferred Thermal Plasma, Ispc_20, 2011, p 3-6

  33. F. Gitzhofer, E. Bouyer, and M. Boulos, Suspension Plasma Spray. U.S. Patent 5,609,921, 26, 1997

  34. L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829. https://doi.org/10.1016/j.surfcoat.2009.03.005

    Article  CAS  Google Scholar 

  35. P. Fauchais, V. Rat, J.F. Coudert, R. Etchart-Salas and G. Montavon, Operating Parameters for Suspension and Solution Plasma-Spray Coatings, Surf. Coat. Technol., 2008, 202(18), p 4309-4317

    Article  CAS  Google Scholar 

  36. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  37. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17(1), p 115-123

    Article  CAS  Google Scholar 

  38. S. Joshi and P. Nylen, Advanced Coatings by Thermal Spray Processes, Technologies, 2019, 7(4), p 79

    Article  Google Scholar 

  39. A. Pakseresht, Production, Properties, and Applications of High Temperature Coatings, IGI Global, London, 2018

    Book  Google Scholar 

  40. B. Freiberg, Nitriding of Aluminum and Its Alloys, Heat Treat. Nonferrous Alloy., 2018, 4, p 302-307

    Google Scholar 

  41. K. Farokhzadeh and A. Edrisy, Surface Hardening by Gas Nitriding, Compr. Mater. Finish., 2017, 2-3, p 107-136

    Article  Google Scholar 

  42. P. Visuttipitukul, T. Aizawa and H. Kuwahara, Advanced Plasma Nitriding for Aluminum and Aluminum Alloys, Mater. Trans., 2003, 44(12), p 2695-2700

    Article  CAS  Google Scholar 

  43. M. Yamada, T. Inamoto, M. Fukumoto and T. Yasui, Fabrication of Silicon Nitride Thick Coatings by Reactive RF Plasma Spraying, Mater. Trans., 2004, 45(12), p 3304-3308. https://doi.org/10.2320/matertrans.45.3304

    Article  CAS  Google Scholar 

  44. D. Smolen and P. Dominik, Synthesis of Aluminium Nitride Nanopowder, Ceram. Mater., 2013, 65(1), p 4-7

    CAS  Google Scholar 

  45. T. Kim, S. Choi, and D. Park, Chemical Reaction Considered Numerical Simulation on Preparation of AlN Nano Powder by Non-transferred Thermal Plasma, Ispc_20, 2011, (November 2014), p 3-6

  46. J.F. Sun, M.Z. Wang, Y.C. Zhao, X.P. Li and B.Y. Liang, Synthesis of Titanium Nitride Powders by Reactive Ball Milling of Titanium and Urea, J. Alloys Compd., 2009, 482(1-2), p 29-31

    Article  Google Scholar 

  47. S.A. Rounaghi, H. Eshghi, S. Scudino, A. Vyalikh, D.E.P. Vanpoucke, W. Gruner, S. Oswald, A.R. Kiani Rashid, M. Samadi Khoshkhoo, U. Scheler and J. Eckert, Mechanochemical Route to the Synthesis of Nanostructured Aluminium Nitride, Sci. Rep., 2016, 6, p 1-11

    Article  Google Scholar 

  48. R. Dallaev, D. Sobola, P. Tofel, L. Škvarenina and L. Škvarenina, Aluminum Nitride Nanofilms by Atomic Layer Deposition Using Alternative Precursors Hydrazinium Chloride and Triisobutylaluminum, Coatings, 2020, 10, p 195. https://doi.org/10.3390/coatings10100954

    Article  CAS  Google Scholar 

  49. A.I. Abdulagatov, S.M. Ramazanov, R.S. Dallaev, E.K. Murliev, D.K. Palchaev, M.K. Rabadanov and I.M. Abdulagatov, Atomic Layer Deposition of Aluminum Nitride Using Tris (Diethylamido) Aluminum and Hydrazine or Ammonia, Russ. Microelectron., 2018, 47(2), p 118-130

    Article  CAS  Google Scholar 

  50. M. Shahien, M. Yamada, T. Yasui and M. Fukumoto, Reactive Atmospheric Plasma Spraying of AlN Coatings: Influence of Aluminum Feedstock Particle Size, J. Therm. Spray Technol., 2011, 20(3), p 580-589

    Article  CAS  Google Scholar 

  51. M. Shahien, M. Yamada and M. Fukumoto, Influence of Transient Liquid Phase Promoting Additives upon Reactive Plasma Spraying of AlN Coatings and Its Properties, Adv. Eng. Mater., 2018, 20(6), p 1-14

    Article  Google Scholar 

  52. T. Ide, K. Komeya, T. Meguro and J. Tatami, Synthesis of AlN Powder by Carbothermal Reduction-Nitridation of Various Al2O3 Powders with CaF2, J. Am. Ceram. Soc., 1999, 82(11), p 2993-2998

    Article  CAS  Google Scholar 

  53. K. Bretterbauer and C. Schwarzinger, Melamine Derivatives—A Review on Synthesis and Application, Curr. Org. Synth., 2012, 9(3), p 342-356

    Article  CAS  Google Scholar 

  54. M. Shahien, M. Yamada, T. Yasui and M. Fukumoto, In Situ Fabrication of AlN Coating by Reactive Plasma Spraying of Al/AlN Powder, Coatings, 2011, 1(2), p 88-107. https://doi.org/10.3390/coatings1020088

    Article  CAS  Google Scholar 

  55. S.A. Rounaghi, A.R. Kiani Rashid, H. Eshghi and J. Vahdati Khaki, Formation of Nanocrystalline H-AlN during Mechanochemical Decomposition of Melamine in the Presence of Metallic Aluminum, J. Solid State Chem., 2012, 190, p 8-11. https://doi.org/10.1016/j.jssc.2012.01.005

    Article  CAS  Google Scholar 

  56. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin., J. Sangster, and M.-A. Van Ende, FactSage Thermochemical Software and Databases, 2010-2016, Calphad, 2016, 54, p 35-53, www.factsage.com

  57. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136(1962), http://users.wfu.edu/natalie/s15phy752/lecturenote/HohenbergPhysRev.136.B864.pdf

  58. W. Kohn and L.J. Sham, Self-consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140(5), p 1133-1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  59. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18), p 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  60. P. Giannozzi, QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, J. Phys. Condens. Matter, 2009, 21(39), p 395502

    Article  Google Scholar 

  61. P. Giannozzi, Advanced Capabilities for Materials Modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 2017, 29, p 1-30. https://doi.org/10.1088/1361-648X/aa8f79

    Article  Google Scholar 

  62. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys., 2010, 132(15), p 154104

    Article  Google Scholar 

  63. K. Lejaeghere, Reproducibility in Density Functional Theory Calculations of Solids, Science (80-. ), 2016, 351(6280), p aad3000

    Article  Google Scholar 

  64. G. Prandini, A. Marrazzo, I.E. Castelli, N. Mounet and N. Marzari, Precision and Efficiency in Solid-State Pseudopotential Calculations, npj Comput. Mater., 2018, 4(1), p 1-13. https://doi.org/10.1038/s41524-018-0127-2

    Article  Google Scholar 

  65. K. Hu, M. Wu, S. Hinokuma, T. Ohto, M. Wakisaka, J.I. Fujita and Y. Ito, Boosting Electrochemical Water Splitting: Via Ternary NiMoCo Hybrid Nanowire Arrays, J. Mater. Chem. A, 2019, 7(5), p 2156-2164

    Article  CAS  Google Scholar 

  66. B.G. Pfrommer, M. Côté, S.G. Louie and M.L. Cohen, Relaxation of Crystals with the Quasi-Newton Method, J. Comput. Phys., 1997, 131(1), p 233-240

    Article  CAS  Google Scholar 

  67. N. Marzari, D. Vanderbilt and M.C. Payne, Ensemble Density-Functional Theory for Ab Initio Molecular Dynamics of Metals and Finite-Temperature Insulators, Phys. Rev. Lett., 1997, 79(7), p 1337-1340

    Article  CAS  Google Scholar 

  68. D. Raczkowski, A. Canning and L.W. Wang, Thomas-Fermi Charge Mixing for Obtaining Self-consistency in Density Functional Calculations, Phys. Rev. B Condens. Matter Mater. Phys., 2001, 64(12), p 1-4

    Article  Google Scholar 

  69. B.T. Sutcliffe and R.G. Woolley, On the Quantum Theory of Molecules, J. Chem. Phys., 2012, 137(22), p 22A544

    Article  Google Scholar 

  70. T.D. Kühne, M. Krack, F.R. Mohamed and M. Parrinello, Efficient and Accurate Car-Parrinello-Like Approach to Born–Oppenheimer Molecular Dynamics, Phys. Rev. Lett., 2007, 98(6), p 1-4

    Article  Google Scholar 

  71. Dassault Systèmes BIOVIA. Materials Studio., 2019

  72. Aluminum Association et al., Aluminum: Properties and Physical Metallurgy, J.E. Hatch, Ed., ASM International, 1984

  73. P. Pulay and G. Fogarasi, Fock Matrix Dynamics, Chem. Phys. Lett., 2004, 386(4-6), p 272-278

    Article  CAS  Google Scholar 

  74. M. Shahien, M. Yamada and M. Fukumoto, Challenges Upon Reactive Plasma Spray Nitriding: Al Powders and Fabrication of AlN Coatings as a Case Study, J. Therm. Spray Technol., 2016, 25(5), p 851-873

    Article  CAS  Google Scholar 

  75. M. Vardelle, P. Fauchais, A. Vardelle, K.I. Li, B. Dussoubs and N.J. Themelis, Controlling Particle Injection in Plasma Spraying, J. Therm. Spray Technol., 2001, 10(2), p 267-284

    Article  CAS  Google Scholar 

  76. H. Zhang, A. Vardelle and N.J. Themelis, In-Flight Oxidation and Evaporation of Plasma-Sprayed Iron Particles, High Temp. Mater. Process., 2003, 7, p 277-298

    Article  CAS  Google Scholar 

  77. G. Espié, P. Fauchais, J.C. Labbe, A. Vardelle, and B. Hannoyer, Oxidation of Iron Particles During APS: Effect of the Process on Formed Oxide. Wetting of Droplets on Ceramics Substrates, Proceedings of the International Thermal Spray Conference, 2001, p 821-827

  78. F. Reusch, D.U. Gmbh, and S. Rudolph, Use of Boron Nitride Coatings with Aluminum Casting Technology, Scanning, 2015, p 77-80, https://www.alu-stop.de/download/pdf/gi0893.pdf

  79. H. Fujii, H. Nakae and K. Okada, Interfacial Reaction Wetting in the Boron Nitride/Molten Aluminum System, Acta Metall. Mater., 1993, 41(10), p 2963-2971

    Article  CAS  Google Scholar 

  80. S. Bao, K. Tang, A. Kvithyld, T.A. Engbl, and M. Tangstad, Light Metals 2012, Light Metals 2012, Suarez C.E, Ed., 2016, p 1057-1062

  81. H. Wang, J. Han, Z. Li and S. Du, Effect of Additives on Self-propagating High-Temperature Synthesis of AlN, J. Eur. Ceram. Soc., 2001, 21(12), p 2193-2198

    Article  CAS  Google Scholar 

  82. M. Yamada, H. Nakamura, M. Fukumoto, T. Yasui and K. Takahashi, Fabrication of Aluminum Nitride Coating by Reactive RF Plasma Spraying, Yosetsu Gakkai Ronbunshu/Quarterly, J. Jpn. Weld. Soc., 2005, 23(1), p 143-149. https://doi.org/10.2207/qjjws.23.143

    Article  CAS  Google Scholar 

  83. M. Shahien, M. Yamada, T. Yasui and M. Fukumoto, Cubic Aluminum Nitride Coating through Atmospheric Reactive Plasma Nitriding, J. Therm. Spray Technol., 2010, 19(3), p 635-641

    Article  CAS  Google Scholar 

  84. D. Kubátová and M. Melichar, Uncertainty of Surface Measurement, Ann. DAAAM Proc. Int. DAAAM Symp., 2018, 29(1), p 1239-1248

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate Dr. Kossi Eyadéma Béré for technical support on the plasma system at Université de Sherbrooke. We would like to express our gratitude to Mr. Alain Simard, Dr. Alireza Hekmat-Ardekani, and Mr. Maxime Drolet at the Research and Development Center of Pyrotek Inc., for financial support, for providing the facilities to conduct the laboratory tests, the corrosion test, and permission to publish the results. We thank Mr. Charles Bertrand and Mr. Stéphane Gutierrez for conducting the SEM analysis.

Funding

This project was financially supported by Pyrotek Inc. (Sherbrooke, QC, Canada) and Mitacs (No. IT15444) (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Gitzhofer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. However, Pyrotek Inc. was involved in the design of the study, data collection, data analysis, providing the facilities and materials for the research, and granting permission to publish the results. Nonetheless, they played no role in influencing the presentation or interpretation of the reported research results.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barandehfard, F., Aluha, J., Ntho, T.A. et al. Synthesizing AlN Coatings Using Suspension Plasma Spraying: Effect of Promotional Additives and Aluminum Powder Particle Size. J Therm Spray Tech 31, 2091–2111 (2022). https://doi.org/10.1007/s11666-022-01414-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01414-z

Keywords

Navigation