Skip to main content
Log in

Fabrication of Silicon Carbide Nanocrystals by Electrical Discharge and Laser-Induced Processes in Solution

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The capabilities of the liquid assisted electrical discharge technique with additional laser irradiation of colloids for the synthesis of SiC nanocrystals (NCs) have been studied. For optimization of the conditions for the binary NCs formation, the characterization of inner structure, phase composition and morphology was performed by means of high resolution transmission electron microscopy, selected area electron diffraction, X-Ray photoelectron spectroscopy, Raman and Fourier-transform infrared spectroscopy. The results of the characterization proved the formation of near-spherical SiC NCs having two-peak size distribution with average diameter of 3.7 and 11.4 nm before and 2.3 nm after additional laser treatment. The possible mechanism of nanostructured SiC formation has been discussed. The developed technique is expected to be effective for fabrication of SiC NCs as a promising material for optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Abderrazak H, Bel Hadj Hmida E S (2011) Silicon Carbide: Synthesis and Properties in Properties and Applications of Silicon Carbide, ed. Rosario Gerhardt. InTech, https://doi.org/10.5772/15736

  2. Wu R, Zhou K, Yue CY, Wei J, Pan Y (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progr in Mater Sci 72:1–60

    Article  CAS  Google Scholar 

  3. Castellazzi A, Fayyaz A, Romano G, Yang L, Riccio M, Irace A (2016) SiC power MOSFETs performance, robustness and technology maturity. Microelectron Reliab 58:164–176

    Article  CAS  Google Scholar 

  4. Cao T, Cheng Y, Zhang H, Yan B, Cheng Y (2015) High rate fabrication of room temperature red photoluminescent SiC nanocrystals. J Mater Chem C3:4876–4882

    Google Scholar 

  5. Stenberg P, Booker ID, Karhu R, Pedersen H, Janzén E, Ivanov IG (2018) Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry. Physica B 535:44–49

    Article  CAS  Google Scholar 

  6. Hu JQ, Lu QK, Tang KB, Deng B, Jiang RR, Qian YT, Yu WC, Zhou GE, Liu XM, Wu JX (2000) Synthesis and characterization of SiC nanowires through a reduction-carburization route. J Phys Chem B 104:5251–5254

    Article  CAS  Google Scholar 

  7. Izhevskyi VA, Genova LA, Bressiani AHA, Bressiani JC (2000) Liquid phase sintered SiC. processing and transformation controlled microstructure tailoring. Mat Res 3:131–138

    Article  CAS  Google Scholar 

  8. Askari S, Macias-Montero M, Velusamy T, Maguire P, Svrcek V, Mariotti D (2015) Silicon-based quantum dots: synthesis, surface and composition tuning with atmospheric pressure plasmas. J Phys D Appl Phys 48:314002

    Article  CAS  Google Scholar 

  9. Nominé AV, Gries T, Noel C, Nominé A, Milichko V, Belmonte T (2021) Synthesis of nanomaterials by electrode erosion using discharges in liquids. J Appl Phys Am Inst Phys 130:151101

    Article  CAS  Google Scholar 

  10. Haq AU, Lucke P, Benedikt J, Maguire P, Mariotti D (2020) Dissociation of tetramethylsilane for the growth of SiC nanocrystals by atmospheric pressure microplasma. Plasma Processes Polym 17(5):1900243

    Article  CAS  Google Scholar 

  11. Hamdan A, El Abiad D, Cha MS (2021) Synthesis of silicon and silicon carbide nanoparticles by pulsed electrical discharges in dielectric liquids. Plasma Chem Plasma Process 41:1647–1660

    Article  CAS  Google Scholar 

  12. Nevar AA, Kiris VV, Mardanian MM, Nedelko MI, Tarasenko NV (2016) Synthesis of silicon nanocrystals in electrical discharge in liquid with spectroscopic plasma characterization. High Temp Mater Processes 20:251–265

    Article  Google Scholar 

  13. Mardanian M, Nevar AA, Tarasenko NV (2013) Optical properties of silicon nanoparticles synthesized via electrical spark discharge in water. Appl Phys A 112:437–442

    Article  CAS  Google Scholar 

  14. Serrano-Ruz JA, Quiñones-Galván JG, Santos Cruz J, de moure-Flores F, Campos González E, Chávez-Chávez A, Gómez-Rosas G (2020) Synthesis of silicon nanoparticles by laser ablation at low fluences in water and ethanol. Mater Res Express 7:025008

    Article  CAS  Google Scholar 

  15. Intartaglia R, Bagga K, Genovese A, Athanassiou A, Cingolani R, Diaspro A, Brandi F (2012) Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid. Phys Chem Chem Phys 14:15406–15411

    Article  CAS  PubMed  Google Scholar 

  16. Liang S-X, Zhang L-C, Reichenberger S, Barcikowski S (2021) Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys Chem Chem Phys 23:11121–11154

    Article  CAS  PubMed  Google Scholar 

  17. Park J, Zhu RS, Lin MC (2002) Thermal decomposition of ethanol. I. Ab initio molecular orbital/rice–ramsperger–kassel–marcus prediction of rate constant and product branching ratios. J Chem Phys 117:3224–3231

    Article  CAS  Google Scholar 

  18. Hu ZF, Park J, Lin MC (2004) Thermal decomposition of ethanol. III. a computational study of the kinetics and mechanism for the CH3+C2H5OH reaction. J Chem Phys 120:6593–6598

    Article  CAS  Google Scholar 

  19. Li J, Kazakov A, Dryer FL (2004) Experimental and numerical studies of ethanol decomposition reactions. J Phys Chem A 108:7671–7680

    Article  CAS  Google Scholar 

  20. Suehara K, Takai R, Ishikawa Y, Koshizaki N, Omura K, Nagata H, Yamauchi Y (2021) Reduction mechanism of transition metal oxide particles in thermally induced nanobubbles during pulsed laser melting in ethanol. ChemPhysChem 22:675–683

    Article  CAS  PubMed  Google Scholar 

  21. Nadarajah R, Tahir S, Landers J, Koch D, Semisalova AS, Wiemeler J, El-Zoka A, Kim S-H, Utzat D, Möller R, Gault B, Wende H, Farle M, Gökce B (2020) Controlling the oxidation of magnetic and electrically conductive solid-solution iron-rhodium nanoparticles synthesized by laser ablation in liquids. Nanomaterials 10:2362

    Article  CAS  PubMed Central  Google Scholar 

  22. Goncharova DA, Kharlamova TS, Lapin IN, Svetlichnyi VA (2019) Chemical and morphological evolution of copper nanoparticles obtained by pulsed laser ablation in liquid. J Phys Chem C 123:21731–21742

    Article  CAS  Google Scholar 

  23. Iwanowski RJ, Fronc K, Paszkowicz W, Heinonen M (1999) XPS and XRD study of crystalline 3C-SiC grown by sublimation method. J Alloys Compd 286:143–147

    Article  CAS  Google Scholar 

  24. Andrievski RA (2009) Synthesis, structure and properties of nanosized silicon carbide. Rev Adv Mater Sci 22:1–20

    CAS  Google Scholar 

  25. Tarasenka N, Kiris V, Stankevičius E, Tarasenko N, Pankov V, Krčma F, Gečys P, Račiukaitis G (2018) Laser irradiation of Gd-Si and Gd-Si-Ge colloids mixtures for fabrication of compound nanoparticles. ChemPhysChem 19:3247–3256

    Article  CAS  Google Scholar 

  26. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7:171–187

    Article  CAS  Google Scholar 

  27. Ziefuss AR, Reich S, Reichenberger S, Levantino M, Plech A (2020) In situ structural kinetics of picosecond laser-induced heating and fragmentation of colloidal gold spheres. Phys Chem Chem Phys 22:4993–5001

    Article  CAS  PubMed  Google Scholar 

  28. Pustovalov VK (2005) Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–108

    Article  CAS  Google Scholar 

  29. Pyatenko A, Wang H, Koshizaki N, Tsuji T (2013) Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photonics Rev 7:596–604

    Article  CAS  Google Scholar 

  30. Zekentes K, Rogdakis K (2011) SiC nanowires: material and devices. J Phys D: Appl Phys 44:133001

    Article  CAS  Google Scholar 

  31. Mercaldo LV, Esposito EM, Delli Veneri P, Fameli G, Mirabella S, Nicotra G (2010) First and second-order Raman scattering in Si nanostructures within silicon nitride. Appl Phys Lett 97:153112

    Article  CAS  Google Scholar 

  32. Wieligor M, Yuejian Wang Y, Zerda TW (2005) Raman spectra of silicon carbide small particles and nanowires. J. Phys.: Condens. Matter 17:2387–2395

    CAS  Google Scholar 

  33. Meng A, Zhang M, GaO W, Sun S, Li Z (2011) Large scale synthesis of β-SiC nanochains and their raman/photoluminescence properties. nanoscale Res Lett 6:1–7

    Article  Google Scholar 

  34. Vetter WM, Dudley M (2004) Characterization of defects in 3C-silicon carbide crystals. J Cryst Growth 260:201–208

    Article  CAS  Google Scholar 

  35. Wang L, Xu J, Ma T, Li W, Huang X, Chen K (1999) The influence of the growth conditions on the structural and optical properties of hydrogenated amorphous silicon carbide thin films. J Alloys Compd 290:273–278

    Article  CAS  Google Scholar 

  36. Askari S, Ul Haq A, Macias-Montero M, Levchenko I, Yu F, Zhou W, Ostrikov K, Maguire P, Svrcek V, Mariotti D (2016) Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas. Nanoscale 8:17141

    Article  CAS  PubMed  Google Scholar 

  37. Kim M, Kim J (2014) Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys Chem Chem Phys 16:11323–11336

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Chen C, Li J-T, Yang Y, Lin Z-M (2011) Surface charges and optical characteristic of colloidal cubic SiC nanocrystals. Nanoscale Res Lett 6:454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fan J, Chu PK (2014) Silicon Carbide Nanostructures: Fabrication, Structure, and Properties. Springer, Switzerland

    Book  Google Scholar 

  40. Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90(12):2555–2560. https://doi.org/10.1021/j100403a003

    Article  CAS  Google Scholar 

  41. Madelung O, Semiconductors: Data Handbook, 3rd ed.; Springer Berlin Heidelberg, 2004, https://doi.org/10.1007/978-3-642-18865-7

  42. Dai D, Guo X, Fan J (2015) Identification of luminescent surface defect in SiC quantum dots Appl. Phys Lett 106:053115

    Google Scholar 

  43. Beke D, Szekrényes Z, Czigány Z, Kamarása K, Gali Á (2015) Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale 7:10982

    Article  CAS  PubMed  Google Scholar 

  44. Ojha KS, Gopal R (2011) New band systems of sic molecule in visible region. Spectrosc Lett 44:267–272

    Article  CAS  Google Scholar 

  45. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698

    Article  CAS  Google Scholar 

  46. Haase V, Kirschstein G, List H, Ruprecht S, Sangster R, Schröder F, Töpper W, Vanecek H, Heit W, Schlichting J, Katscher H (1985) The Si-C Phase Diagram. In: Katscher H, Sangster R, Schröder F. (eds) Si Silicon. Gmelin Handbook of Inorganic Chemistry, vol S-i /B/1–5/3. Springer, Berlin, Heidelberg

  47. Askari S, Levchenko I, Ostrikov K, Maguire P, Mariotti D (2014) Crystalline Si nanoparticles below crystallization threshold: effects of collisional heating in non-thermal atmospheric-pressure microplasmas. Appl Phys Lett 104:163103

    Article  CAS  Google Scholar 

  48. Monastyrsky G (2015) Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids. Nanoscale Res Lett 10:503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Coleman D, Lopez T, Yasar-Inceoglu O, Mangolini L (2015) Hollow silicon carbide nanoparticles from a non-thermal plasma process. J App Phys, 117(19):193301

Download references

Acknowledgements

The authors are thankful to Dr. A. Karoza for FTIR and Dr. A. Ramanenka for the PL measurements. The work was partially supported by the National Academy of Sciences of Belarus under project Convergence 2.2.05 and by the Belarusian Foundation for Fundamental Research under Grant No. F21KOR-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Tarasenko.

Ethics declarations

Conflicts of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevar, A., Tarasenka, N., Nedelko, M. et al. Fabrication of Silicon Carbide Nanocrystals by Electrical Discharge and Laser-Induced Processes in Solution. Plasma Chem Plasma Process 42, 1085–1099 (2022). https://doi.org/10.1007/s11090-022-10266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10266-y

Keywords

Navigation