Skip to main content
Log in

Wear Performance of TiCN Coating on Medium-Carbon Steel by Composite Thermo-Reactive Deposition

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Duplex surface treatment of AISI 1045 steel involves nitriding followed by titanium thermo-reactive deposition (TRD) techniques at 900 ℃ for 3 h. The treatment forms a titanium carbonitride coating with a maximum thickness of 8.5 μm. Characterization using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM–EDS) and X-ray diffraction (XRD) indicated that the compact and dense coatings mainly consisted of Ti(C0.51N0.21) and Fe0.975Ti0.025 phases. Furthermore, the microhardness and tribological properties of the coating treated at 900 ℃ for 3 h were investigated using microhardness test and wear test. The average hardness value of the pre-nitride coating is 1136 HV0.05 and that of the composite treatment coating is 2166 HV0.05, which are 4.6 and 8.8 times that of the substrate, respectively. Compared with the substrate, the pre-nitriding layer presented a moderate friction coefficient, whereas the samples with pre-nitriding and titanizing duplex-treated layers showed the best wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu YY, Qu HJ, Luo M, He C, and Qu J. Wear 456–457 (2020) 203352. https://doi.org/10.1016/j.wear.2020.203352.

    Article  CAS  Google Scholar 

  2. Sun CY, Xue Q, Zhang J, Wan S, Tieu A K, and Tran B H. Vacuum 148 (2018) 158. https://doi.org/10.1016/j.vacuum.2017.11.015.

    Article  CAS  Google Scholar 

  3. Ozkan D, Yilmaz MA, Szala M, Turkuz C, Chocyk D, Tunc C, and Yagci M B. Ceram Int 47 (2021) 20077. https://doi.org/10.1016/j.ceramint.2021.04.015.

    Article  CAS  Google Scholar 

  4. Saoula N, Madaoui N, Tadjine R, Erasmus R M, Shrivastava S, and Comins J D. Thin Solid Films 616 (2016) 521. https://doi.org/10.1016/j.tsf.2016.08.047.

    Article  CAS  Google Scholar 

  5. Das S, Guha S, Das PP, and Ghadai R K. Ceram Int 46 (2020) 10292. https://doi.org/10.1016/j.ceramint.2020.01.023.

    Article  CAS  Google Scholar 

  6. Thakur A, Gangopadhyay S, and Maity KP. Surf Eng 30 (2014) 516. https://doi.org/10.1179/1743294414y.0000000274.

    Article  CAS  Google Scholar 

  7. Ganji O, Sajjadi SA, Yang ZG, Mirjalili M, and Najari M R. Ceram Int 46 (2020) 25320. https://doi.org/10.1016/j.ceramint.2020.06.326.

    Article  CAS  Google Scholar 

  8. Arai T. J Heat Treati 1 (1979) 15. https://doi.org/10.1007/BF02833234.

    Article  CAS  Google Scholar 

  9. Fan X, Yang Z, Xia Z, Zhang C, and Che H Q. J Alloys Compd 505 (2010) L15. https://doi.org/10.1016/j.jallcom.2010.06.064.

    Article  CAS  Google Scholar 

  10. Aghaie-Khafri M, and Fazlalipour FJS. Surf Coat Tech 202 (2008) 4107. https://doi.org/10.1016/j.surfcoat.2008.02.027.

    Article  CAS  Google Scholar 

  11. Shan Z, Pang Z, Luo F, Wei F D. Surf Coat Tech 206 (2012) 4322. https://doi.org/10.1016/j.surfcoat.2012.04.057.

    Article  CAS  Google Scholar 

  12. Chicco B, Borbidge W, and Summerville E. Mater Sci Eng 266 (1999) 62. https://doi.org/10.1016/S0921-5093(99)00035-0.

    Article  Google Scholar 

  13. Matijević B and Stupnišek M. Surf Eng 23 ( 2007) 52. https://doi.org/10.1179/174329407X161591.

    Article  CAS  Google Scholar 

  14. Pouraliakbar H, Khalaj G, Gomidželović L, Khalaj M J, and Nazerfakhari M. Ceram Int 41 (2015) 9350. https://doi.org/10.1016/j.ceramint.2015.03.306.

    Article  CAS  Google Scholar 

  15. Khalaj G, Nazari A, Khoie SMM, Khalaj M J, and Pouraliakbar H. Surf Coat Tech 225 (2013) 1. https://doi.org/10.1016/j.surfcoat.2013.02.030.

    Article  CAS  Google Scholar 

  16. Shan L, Wang YX, Li J, Li H, Wu X, and Chen J. Surf Coat Tech 226 (2013) 40. https://doi.org/10.1016/j.surfcoat.2013.03.034.

    Article  CAS  Google Scholar 

  17. Beliardouh NE, Nouveau C, Walock MJ, and Jacquet P. Surf Coat Tech 259 (2014) 483. https://doi.org/10.1016/j.surfcoat.2014.10.042.

    Article  CAS  Google Scholar 

  18. De Mello J, Binder C, Binder R, and Klein A N. Tribol-Mater Surf In 4 (2010) 191. https://doi.org/10.1179/1751584X10Y.0000000001.

    Article  Google Scholar 

  19. Sirin SY and Kaluc EJM. Mater Des 36 (2012) 741. https://doi.org/10.1016/j.matdes.2011.12.025.

    Article  CAS  Google Scholar 

  20. Zhu YS, Wei XN, and Yin YX. Surf Eng 37 (2021) 1422. https://doi.org/10.1080/02670844.2021.1979841.

    Article  CAS  Google Scholar 

  21. Yeung C, Lau K, Li H, and Luo D F. J Mater Process Tech 66 (1997) 249. https://doi.org/10.1016/S0924-0136(96)02535-6.

    Article  Google Scholar 

  22. Tang L, Jia W, and Hu J. Mater Lett 231 (2018) 91. https://doi.org/10.1016/j.matlet.2018.08.010.

    Article  CAS  Google Scholar 

  23. Kim Y-M, Son SW, and Lee WB. Met Mater Int 24 (2018) 180. https://doi.org/10.1007/s12540-017-7191-x.

    Article  CAS  Google Scholar 

  24. Boztepe E, Alves A, Ariza E, Rocha L A, Cansever N, and Toptan F. Surf Coat Tech 334 (2018) 116. https://doi.org/10.1016/j.surfcoat.2017.11.033.

    Article  CAS  Google Scholar 

  25. Wang S-L and Jiang NJSE. Surf Eng 37 (2021) 1. https://doi.org/10.1080/02670844.2020.1807813.

    Article  CAS  Google Scholar 

  26. Soydan Y, Koksal S, Demirer A, and Celik V. Tribol Trans 51 (2008) 74. https://doi.org/10.1080/10402000701739370.

    Article  Google Scholar 

Download references

Acknowlegdement

This work was financially supported by the State Key Laboratory of Long-life High Temperature Materials (Dongfang Turbine Co., Ltd, Grant No. DTCC28EE200794).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tu, Y., Sun, C. et al. Wear Performance of TiCN Coating on Medium-Carbon Steel by Composite Thermo-Reactive Deposition. Trans Indian Inst Met 75, 2759–2766 (2022). https://doi.org/10.1007/s12666-022-02649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02649-8

Keywords

Navigation