Skip to main content
Log in

Linearity improvement of LC cross-coupled low noise amplifier for X band applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents the design and analysis of linearity improved low noise amplifier (LNA) for X-band applications such as wireless, satellite, and radar communication. In such applications for efficient communication, the LNA should have good linearity in order to handle strong interferers at wideband receiver operation. Hence, achieving better linearity is inevitable for high frequency applications, but it has a trade-off between circuit power, noise, and bandwidth. For linearity improvement of this high frequency band applications, a low power, low noise, modified Common Gate-Common Source LNA with cross-coupled LC circuit in cascode stage is proposed in this work. The LNA is designed and implemented in UMC 180 nm complementary metal–oxide–semiconductor process technology. From the post-layout simulations, the observed third-order input intercept point is 13.09 dBm at the center frequency of 10 GHz. The proposed LNA provides a maximum gain of 18.07 dB and a minimum Noise Figure of 2.88 dB with 5.3 mW power consumption at a supply of 1.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abuelmaatti A (2008) RF techniques for IEEE 802.15. 4: circuit design and device modelling (Doctoral dissertation, University of Glasgow).

  • Anandini C, Talukdar FA, Singh CL, Kumar R, Raja R (2020) Analysis of CMOS 0.18 μm UWB low noise amplifier for wireless application. Microsyst Technol 26(10):3243–57

    Article  Google Scholar 

  • Biswas A, Bhattacherjee S (2014) Temperature dependent model for threshold voltage and subthreshold slope of strained-Si channel MOSFETs with a polysilicon gate. Microelectron Reliab 54(8):1527–1533

    Article  Google Scholar 

  • Blaakmeer SC, Klumperink EA, Leenaerts DM, Nauta B (2008) Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J Solid State Circ 43(6):1341–1350

    Article  Google Scholar 

  • Cao C, Li X, Li Y, Zeng H, Wang Z, Yasir U (2021a) A triple-Cascode X-band LNA design with modified post-distortion network. Electronics. https://doi.org/10.3390/electronics10050546

    Article  Google Scholar 

  • Cao C, Li Y, Wang Z, Huang Z, Tan T, Chen D, Li X (2021b) CMOS X-band pole-converging triple-cascode LNA with low-noise and wideband performance. IET Circ Devic Syst. https://doi.org/10.1049/cds2.12081

    Article  Google Scholar 

  • Chang CH, Jou CF (2011) A direct conversion merged LNA-I/Q-mixer with noise reduction using dual cross coupling for WiMAX/WiBro applications. IEEE Microw Wirel Compon Lett 22(1):32–34

    Article  Google Scholar 

  • Eskandari R, Ebrahimi A, Faraji Baghtash H (2021) A wideband balun‐LNA employing symmetrical CCC technique and balanced outputs. IET Circ Dev Syst

  • Gladson SC, Alekhya K, Bhaskar M (2019) A fully CMOS RF down-converter with 81.88 dB SFDR for IEEE 802.15. 4 based wireless systems. Microsystem Technologies:1–16.

  • Gladson SC, Praveen R, Bhaskar M (2020) A 0.1–2.75 GHz high-linear low-noise transconductance amplifier for high-performance multi-standard wireless applications. Microsyst Technol 26(7):2279–93

    Article  Google Scholar 

  • Gladson SC, Siva Prasad P, Thenmozhi V, Bhaskar M (2021) A 4–6 GHz single-ended to differential-ended low-noise amplifier for IEEE 802.11 ax wireless applications with inherent complementary distortion cancellation. J Circ Syst Compute: 2150265

  • Han HG, Kim TW (2012) A CMOS RF programmable-gain amplifier for digital TV with a +9-dBm IIP3 cross-coupled common-gate LNA. IEEE Trans Circ Syst II Express Briefs 59(9):543–547

    Google Scholar 

  • Hossam A, Sharaf K (2022) Enhanced capacitor cross coupled front-end member. IEEE Integrated Circ Lab, Egypt. https://www.design-reuse.com/articles/17690/capacitor-cross-coupled-front-end.html

  • Kanda K, Nose K, Kawaguchi H, Sakurai T (2001) Design impact of positive temperature dependence on drain current in sub-1-V CMOS VLSIs. IEEE J Solid State Circ 36(10):1559–1564

    Article  Google Scholar 

  • Kazemi AH, Hayati M (2021) Design and analysis of a flat gain and linear low noise amplifier using modified current reused structure with feedforward structure. Integration 81:123–136

    Article  Google Scholar 

  • Khalili MS, Jalali M (2012) A capacitor cross-coupled differential cascade low-noise amplifier. In: 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA) (pp. 212–215). IEEE.ss

  • Kishore KH, Venkataramani B, Raju BK (2019) Wideband Balun-LNAs using asymmetric CCC technique for WLAN and mobile WiMAX applications. Microelectron J 90:105–116

    Article  Google Scholar 

  • Kumar R, Talukdar FA, Rajan A, Devi A, Raja R (2020) Parameter optimization of 5.5 GHz low noise amplifier using multi-objective firefly algorithm. Microsyst Technol. 26(10):3289–97

    Article  Google Scholar 

  • Leistiko O, Grove AS, Sah CT (1965) Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces. IEEE Trans Electron Devices 12(5):248–254

    Article  Google Scholar 

  • Liu Z, Boon CC, Yu X, Li C, Yang K, Liang Y (2021) A 0.061-mm2 1–11-GHz noise-canceling low-noise amplifier employing active feedforward with simultaneous current and noise reduction. IEEE Trans Microw Theory Tech 69(6):3093–106

    Article  Google Scholar 

  • Marzuki A, Kong CX, Mubin MA (2020) A differential cross-coupling common gate low noise amplifier (LNA) for MedRadio band application. Int J Elect Electron Eng Telecommun 9(1):56–61

    Google Scholar 

  • Razavi B (2002) Design of analog CMOS integrated circuits. Tata McGraw-Hill Education.

  • Sabzi M, Kamarei M, Razban T, Mahé Y (2020) New noise cancellation topology in common-gate LNAs. Microelectron J 100:104800

    Article  Google Scholar 

  • Schmid RL, Cressler JD (2014) A digitally-controlled seven-state X-band SiGe variable gain low noise amplifier. In: 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (pp. 187–190). IEEE.

  • Shim J, Jeong J (2015) Design of a capacitor cross-coupled dual-band LNA with switched current-reuse technique. Int J Electron 102(10):1609–1620

    Google Scholar 

  • Shirmohammadi B, Yavari M (2021) A linear wideband CMOS Balun-LNA with balanced loads. In: IEEE Transactions on Circuits and Systems II: Express Briefs

  • Snir N, Bar-Helmer N, Pasternak R, Regev D (2009) A packaged X-band low noise amplifier. In: 2009 IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (pp. 1–4). IEEE.

  • Song D, Fan XN, Bao K, Hua ZJ (2014) Design of a capacitor cross-coupled common gate wideband low noise amplifier with noise canceling technique. In: Applied Mechanics and Materials (Vol. 618, pp. 548–552). Trans Tech Publications Ltd.

  • Sreekumar R, Nasrollahpour M, Hamedi-Hagh S (2017) Cascode stage based LNA for bluetooth applications in 45 nm CMOS technology. In: 2017 New Generation of CAS (NGCAS) (pp. 145–148). IEEE.

  • Tiwari S, Mukherjee J (2021) An Inductorless Wideband Gm-boosted Balun LNA with nMOS-pMOS Configuration and Capacitively Coupled Loads for sub-GHz IoT Applications. IEEE Transactions on Circuits and Systems II: Express Briefs

  • Tsai JH, Huang WL, Lin CY, Chang CHRA (2014) An X-band low-power CMOS low noise amplifier with transformer inter-stage matching networks. In: 2014 9th European microwave integrated circuit conference (pp. 524–527). IEEE.

  • Wang W, Wang C (2014) Capacitor cross-coupled fully-differential CMOS folded cascode LNAs with ultra-low power consumption. Wirel Pers Commun 78(1):45–55

    Article  Google Scholar 

  • Zhuo W, Embabi S, de Gyvez JP, Sánchez-Sinencio E (2000) Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. In: Proceedings of the 26th European Solid-State Circuits Conference. (pp. 77–80). IEEE.

  • Zhuo W, Li X, Shekhar S, Embabi SH, de Gyvez JP, Allstot DJ, Sanchez-Sinencio E (2005) A capacitor cross-coupled common-gate low-noise amplifier. IEEE Trans Circ Syst II Express Briefs 52(12):875–879

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thenmozhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thenmozhi, V., Bhaskar, M. Linearity improvement of LC cross-coupled low noise amplifier for X band applications. Microsyst Technol 28, 2731–2744 (2022). https://doi.org/10.1007/s00542-022-05325-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05325-5

Navigation