Skip to main content
Log in

Critical Analysis of Demographic Data Based on ISO/IEC 17,025 Standard for the Regionalization of Brazilian Anthromes

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The objective of this work was to critically analyze the demographic data indexed in the National Spatial Data Infrastructure (Brazil) for use in the regionalization of Brazilian anthropogenic biomes. The ISO/IEC 17,025 Standard was used as a basic tool to structure the Guide for Critical Analysis of Demographic Results, thus establishing the connection between Metrology and Human Ecology to guarantee the quality of results. In this perspective, first, the conceptual and analytical transposition of the provisions of the standard applicable to the evaluation of methods and results was carried out, being them the parameters of validation of methods and the tools to guarantee the validity of internal results. After the transposition, the manuals and technical reports, data, metadata, and results of the Brazilian census method were critically analyzed. The results showed that the official producer of results in Brazil uses resources for quality control that meet the characteristics of the devices transposed in this work. Thus, it was observed that the method meets the respective intended use of producing demographic results. It was also noted that it reduces the area covered by census information, relevantly specializing population data for the regionalization of Brazilian anthromes. Therefore, the quality of the demographic data was confirmed by means of an analytical system based on metrological principles. Furthermore, the method of critical analysis of demographic data presented itself as a tool that can help other users of geospatial data in the qualitative assessment of the conformity of the results to the intended use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. United Nations Environmental Programme (UNEP), Protection of global climate for present and future generations of mankind, In Annual Report of Executive Director B, (1988) pp. 138–140. https://digitallibrary.un.org/record/54234.

  2. A. Schaffartzik, M. Pichler, E. Pineault, D. Wiedenhofer and H. Haberl, The transformation of provisioning systems from an integrated perspective of social metabolism and political economy: a conceptual framework. Sustain. Sci., 16 (2021) 1405–1421. https://doi.org/10.1007/s11625-021-00952-9

    Article  Google Scholar 

  3. J.C. Burgess, Economics of the Biodiversity Convention. Oxford University Press. (2021). https://doi.org/10.1093/acrefore/9780199389414.013.421.

  4. A. Dagnachew, A. Hof, H. van Soest and D. van Vuuren, Climate Change Measures and Sustainable Development Goals: Mapping synergies and trade-offs to guide multi-level decision-making. PBL Netherlands Environmental Assessment Agency: The Hague. (2021). pp. 1–55. https://www.pbl.nl/en/publications/climate-change-measures-and-sustainable-development-goals.

  5. P.H. Verburg, N. Crossman, E.C. Ellis, A. Heinimann, P. Hostert, O. Mertz, H. Nagendra, T. Sikor, K.-H. Erb, N. Golubiewski, R. Grau, M. Grove, S. Konaté, P. Meyfroidt, D.C. Parker, R.R. Chowdhury, H.H. Shibata, A. Thomson and L. Zhen, Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12 (2015) 29–41. https://doi.org/10.1016/j.ancene.2015.09.004.

    Article  Google Scholar 

  6. S. Kapitza, N. Golding and B.A. Wintle, A fractional land use change model for ecological applications. Environ. Modell. Softw., 147 (2022) 105258. https://doi.org/10.1016/j.envsoft.2021.105258.

    Article  Google Scholar 

  7. T. Shumba, A. De Vos, R. Biggs, K.J. Esler and H.S. Clements, The influence of biophysical and socio-economic factors on the effectiveness of private land conservation areas in preventing natural land cover loss across South Africa. Global Ecol. Conserv., 28 (2021) e01670. https://doi.org/10.1016/j.gecco.2021.e01670.

    Article  Google Scholar 

  8. A. Dresse, J.Ø. Nielsen and I. Fischhendler, From corporate social responsibility to environmental peacebuilding: The case of bauxite mining in Guinea. Resour. Policy., 74 (2021) 102290. https://doi.org/10.1016/j.resourpol.2021.102290.

    Article  Google Scholar 

  9. P. He, K. Feng, G. Baiocchi, L. Sun and K. Hubacek, Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat. Food. (2021). https://doi.org/10.1038/s43016-021-00350-5.

    Article  Google Scholar 

  10. S. Vallecillo, A. La Notte, G. Zulian, S. Ferrini, J. Maes, Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol. Modell., 392 (2019) 196–211. https://doi.org/10.1016/j.ecolmodel.2018.09.023.

    Article  Google Scholar 

  11. E.C. Ellis, N. Ramankutty, Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ., 6(8) (2008) 439–447. https://doi.org/10.1890/070062.

    Article  Google Scholar 

  12. E.C. Ellis, Sustaining biodiversity and people in the world's anthropogenic biomes. Curr. Opin. Environ. Sustain., 5(3–4) (2013) 368–372. https://doi.org/10.1016/j.cosust.2013.07.002.

    Article  Google Scholar 

  13. E.C. Ellis Anthropogenic Taxonomies – A Taxonomy of the Human Biosphere, in Projective Ecologies., C. Reed and N.-M. Lister (Editors). Actar: Harvard University School of Design, (2014) p. 168–182. https://doi.org/10.13140/2.1.4524.6240.

  14. E.C Ellis, Ecologies of the Anthropocene: Global Upscaling of Social-Ecological Infrastructures. New Geographies, 6, (2014) 20–27, ISBN 9781934510377.

  15. L.J. Martin, J.E. Quinn, E.C. Ellis, M.R. Shaw, M.A. Dorning, L.M. Hallett, N.E. Heller, R.J. Hobbs, C.E. Kraft, E. Law, N.L. Michel, M.P. Perring, P.D. Shirey and R. Wiederholt, Conservation opportunities across the world’s anthromes. Divers. Distrib., 20 (2014) 745–755. https://doi.org/10.1111/ddi.12220.

    Article  Google Scholar 

  16. R.S. DeFries, E.C. Ellis, F.S. Chapin III, P.A. Matson, B.L. Turner, A. Agrawal, P.J. Crutzen, C. Field, P. Gleick and P.M. Kareiva, Planetary opportunities: a social contract for global change science to contribute to a sustainable future. BioScience, 62(6) (2012) 603–606. https://doi.org/10.1525/bio.2012.62.6.11.

    Article  Google Scholar 

  17. L. Alessa, F.S. Chapin, Anthropogenic biomes: a key contribution to earth-system science. Trends Ecol. Evol., 23(10) (2008) 529–531. ISSN 0169-5347. https://doi.org/10.1016/j.tree.2008.07.002.

  18. E.C. Ellis, U. Pascual and O. Mertz, Ecosystem services and nature’s contribution to people: negotiating diverse values and trade-offs in land systems. Curr. Opin. Environ. Sustain., 38 (2019) 86–94. https://doi.org/10.1016/j.cosust.2019.05.001.

    Article  Google Scholar 

  19. A.M. Thomson, E.C. Ellis, H.R. Grau, T. Kuemmerle, P. Meyfroidt, N. Ramankutty and G. Zeleke, Sustainable intensification in land systems: trade-offs, scales, and contexts. Curr. Opin. Environ. Sustain., 38 (2019) 37–43. https://doi.org/10.1016/j.cosust.2019.04.011.

    Article  Google Scholar 

  20. N.R. Magliocca, E.C. Ellis, G.R.H. Allington, A. de Bremond, J. Dell’Angelo, O. Mertz, P. Messerli, P. Meyfroidt, R. Seppelt and P.H. Verburg, Closing global knowledge gaps: Producing generalized knowledge from case studies of social-ecological systems. Global Environ. Change, 50 (2018) 1–14. https://doi.org/10.1016/j.gloenvcha.2018.03.003.B.

    Article  Google Scholar 

  21. N.R. Magliocca, T.K. Rudel, P.H. Verburg, W.J. McConnell, O. Mertz, K. Gerstner, A. Heinimann, E.C. Ellis, Synthesis in land change science: methodological patterns, challenges, and guidelines. Reg. Environ. Change, 15 (2015) 211–226. https://doi.org/10.1007/s10113-014-0626-8.

    Article  Google Scholar 

  22. N. R. Magliocca, D.G. Brown, E.C. Ellis, Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model. PLoSOne, 9(1) (2014) e86179. ISSN 1932-6203.

  23. M. Ward, J. Carwardine, C.J. Yong, J.E.M. Watson, J. Silcock, G.S. Taylor, M. Lintermans, G.R. Gillespie, S.T. Garnett, J. Woinarski, R. Tingley, R.J. Fensham, C.J. Hoskin, H.B. Hines, J.D. Roberts, M.J. Kennard, M.S. Harvey, D.G. Chapple and A.E. Reside, A national-scale dataset for threats impacting Australia’s imperiled flora and fauna. Ecol. Evol. (2021). https://doi.org/10.1002/ece3.7920.

    Article  Google Scholar 

  24. J.C. Minx, W.F. Lamb, R.M. Andrew, J.G. Canadell, M. Crippa, N. Döbbeling, P.M. Forster, D. Guizzardi, J. Olivier, G.P. Peters, J. Pongratz, A. Reisinger, M. Rigby, M. Saunois, S.J. Smith, E. Solazzo and H. Tian, A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth Syst. Sci. Data, 13 (2021) 5213–5252. https://doi.org/10.5194/essd-13-5213-2021.

    Article  ADS  Google Scholar 

  25. International Organization for Standardization (ISO), ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. ISO/CASCO Committee on conformity assessment: ISO/IEC: 30p. ICS: 03.120.20 Product and company certification. Conformity assessment (2017).

  26. E.C. Ellis, Anthromes. In: M. I. Goldstein & D. A. DellaSala (Eds.), Encyclopedia of the World's Biomes (2020). (pp. 5–11). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.12494-7.

  27. N.R. Magliocca and E.C. Ellis, Evolving human landscapes: a virtual laboratory approach. J. Land Use Sci., 11 (2016) 642–671. https://doi.org/10.1080/1747423X.2016.1241314.

    Article  Google Scholar 

  28. Instituto Brasileiro de Geografia E Estatística (IBGE), Metodologia do censo demográfico 2010. RIO DE JANEIRO: IBGE, 2013. ISBN 0101-2843, (2013).

  29. Comitê Técnico para Implementação da Infraestrutura Nacional de Dados Espaciais (CINDE), Plano de Ação para Implantação da Infraestrutura Nacional de Dados Espaciais. Ministério do Planejamento, Orçamento e Gestão, Rio de Janeiro. 205p. (2010).

  30. B. Magnusson, The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics. 2. Eurachem. ISBN 9789187461590. (2014) http://ri.diva-portal.org/smash/record.jsf?pid=diva2%3A948751.

  31. R. Macarthur and C. Von Holst, A protocol for the validation of qualitative methods of detection. Anal. Methods, 4 (2012) 2744–2754. https://doi.org/10.1039/C2AY05719K.

    Article  Google Scholar 

  32. G.C. Hegerl, O. Hoegh-Guldberg, G. Casassa, M.P. Hoerling, R.S. Kovats, C. Parmesan, D.W. Pierce and P.A. Stott, Good practice guidance paper on detection and attribution related to anthropogenic climate change. Meeting report of the intergovernmental panel on climate change expert meeting on detection and attribution of anthropogenic climate change: IPCC Working Group I Technical Support Unit, University of Bern, Bern. (2010) https://archive.ipcc.ch/pdf/supporting-material/ipcc_good_practice_guidance_paper_anthropogenic.pdf.

  33. M. Li, P.H. Verburg and J. van Vliet, Global trends and local variations in land take per person. Lands. Urban Plan., 218 (2022) 104308. https://doi.org/10.1016/j.landurbplan.2021.104308.

    Article  Google Scholar 

  34. V. Marconi, L. McRae, H. Müller, J. Currie, S. Whitmee, F. Gadallah and R. Freeman, Population declines among Canadian vertebrates: But data of different quality show diverging trends. Ecol. Indic., 130 (2021) 108022. https://doi.org/10.1016/j.ecolind.2021.108022.

    Article  Google Scholar 

  35. W. Peng, G. Iyer, V. Bosetti, V. Chaturvedi, J. Edmonds, A.A. Fawcett, S. Hallegatte, D.G. Victor, D. van Vuuren and J. Weyant, Climate policy models need to get real about people—here’s how. Nature, 594 (2021) 174–176. https://doi.org/10.1038/d41586-021-01500-2.

    Article  ADS  Google Scholar 

  36. M. Thompson, S.L. Ellison and R. Wood, Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem., 74 (2002) 835–855. https://doi.org/10.1351/pac200274050835.

    Article  Google Scholar 

  37. F. Schug, A. Okujeni, J. Hauer, P. Hostert, J.Ø. Nielsen and S. van der Linden, Mapping patterns of urban development in Ouagadougou, Burkina Faso, using machine learning regression modeling with bi-seasonal Landsat time series. Remote Sens. Environ., 210 (2018) 217–228. https://doi.org/10.1016/j.rse.2018.03.022.

    Article  ADS  Google Scholar 

  38. J. Mittaz, C.J. Merchant and E.R. Woolliams, Applying principles of metrology to historical Earth observations from satellites. Metrologia, 56 (2019) 032002. https://doi.org/10.1088/1681-7575/ab1705.

    Article  ADS  Google Scholar 

  39. M. Sené, I. Gilmore and J.-T. Janssen, Metrology is key to reproducing results. Nature News, 547 (2017) 397–399. https://doi.org/10.1038/547397a.

    Article  ADS  Google Scholar 

  40. P. De Bievre, D. Böttger, A.G. Hoechst, J. Hlavay, W. Horwitz and B. Lundgren, The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics. EURACHEM Guide: Eurachem. ISBN: 0-948926-12-0 (1998).

  41. P. Balvanera, S. Quijas, D.S. Karp, N. Ash, E.M. Bennett, R. Boumans, C. Brown, K.M.A. Chan, R. Chaplin-Kramer, B.S. Halpern, J. Honey-Rosés, C.-K. Kim, W. Cramer, M.J. Martínez-Harms, H. Mooney, T. Mwampamba, J. Nel, S. Polasky, B. Reyers, J. Roman, W. Turner, R.J. Scholes, H. Tallis, K. Thonicke, F. Villa, M. Walpole and A. Walz, Ecosystem Services. In: M. Walters, R.J. e Scholes (Ed.) The GEO Handbook on Biodiversity Observation Networks. Cham: Springer International Publishing, (2017) pp.39–78. ISBN 978-3-319-27288-7. https://doi.org/10.1007/978-3-319-27288-7_3.

  42. E. Arlé, A. Zizka, P. Keil, M. Winter, F. Essl, T. Knight, P. Weigelt, M. Jiménez-Muñoz, C. Meyer, bRacatus: a method to estimate the accuracy and biogeographical status of georeferenced biological data. Methods Ecol. Evol. (2021). https://doi.org/10.1111/2041-210X.13629.

    Article  Google Scholar 

  43. F. Dong, H.-C. Kuo, G.-L. Chen, F. Wu, P.-F. Shan, J. Wang, D. Chen, F.-M. Lei, C.-M. Hung, Y. Liu and X.-J. Yang, Population genomic, climatic and anthropogenic evidence suggest the role of human forces in endangerment of green peafowl (Pavo muticus). Proc. Biol. Sci., 288(1948) (2021) 20210073. https://doi.org/10.1098/rspb.2021.0073.

    Article  Google Scholar 

  44. G.M. Mahmoud, S.M. Osman and R.S. Hegazy, Proposed approach for force transducers classification. Int. J. Metrol. Qual. Eng., 12 (2021) 3. https://doi.org/10.1051/ijmqe/2021001.

    Article  Google Scholar 

  45. International Organization for Standardization (ISO), ISO GUIDE 31: Reference Materials – contents of certificates, labels and accompanying documentation. ISO/REMCO: ISO/REMCO: 10p. ICS: 71.040.30 Chemical reagents (2015).

  46. P.J. Brewer, J.S. Kim, S. Lee, O.A. Tarasova, J. Viallon, E. Flores, R.I. Wielgosz, T. Shimosaka, S. Assonov, C.E. Allison, A.M.H. van der Veen, B. Hall, A.M. Crotwell, G.C. Rhoderick, J.T. Hodges, J. Mohn, C. Zellweger, H. Moossen, V. Ebert, and D.W.T. Griffith, Advances in reference materials and measurement techniques for greenhouse gas atmospheric observations. Metrologia, 56 (2019) 034006. https://doi.org/10.1088/1681-7575/ab1506.

    Article  ADS  Google Scholar 

  47. M.H.R. Sales, S. de Bruin, C. Souza and M. Herold, Land Use and Land Cover Area Estimates from Class Membership Probability of a Random Forest Classification. IEEE Trans. Geosci. Remote Sens. (2021). https://doi.org/10.1109/TGRS.2021.3080083.

    Article  Google Scholar 

  48. N.V. Schmidt, J. Oviedo, T. Hruska, L. Huntsinger, T. Kovach, A.M. Kilpatrick, N. Miller and S. Beissinger, Assessing impacts of social-ecological diversity on resilience in a wetland coupled human and natural system. Ecol. Soc.,26(2) (2021) 3. https://doi.org/10.5751/ES-12223-260203.

    Article  Google Scholar 

  49. R.F. Do Valle Júnior, H.E. Siqueira, C.A. Valera, C.F. Oliveira, L.F.S. Fernandes, J.P. Moura, F.A.L. Pacheco, Diagnosis of degraded pastures using an improved NDVI-based remote sensing approach: An application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sens. Appl. Soc. Environ., 14 (2019) 20–33. https://doi.org/10.1016/j.rsase.2019.02.001.

    Article  Google Scholar 

  50. E. S. Brondizio, K. O’brien, X. Bai, F. Biermann, W. Steffen, F. Berkhout, C. Cudennec, M.C. Lemos, A. Wolfe and J. Palma-Oliveira, Re-conceptualizing the Anthropocene: A call for collaboration. Global Environ. Change, 39 (2016) 318–327. ISSN 0959–3780. https://doi.org/10.1016/j.gloenvcha.2016.02.006.

    Article  Google Scholar 

  51. B.W. Van Wilgen, Ecology of fire-dependent ecosystems: Wildland fire science, policy and management. Afr. J. Range Forage Sci. (2021). https://doi.org/10.2989/10220119.2021.1926324.

    Article  Google Scholar 

  52. C. A. López-Santiago, E. Oteros-Rozas, B. Martín-López, T. Plieninger, E.G. Martín and J.A. González, Using visual stimuli to explore the social perceptions of ecosystem services in cultural landscapes: the case of transhumance in Mediterranean Spain. Ecol. Soc. 19(2) (2014). 27 https://doi.org/10.5751/ES-06401-190227.

    Article  Google Scholar 

  53. J.D. Margulies, N.R. Magliocca, M.D. Schmill and E.C. Ellis, Ambiguous geographies: connecting case study knowledge with global change science. Ann. Am. Assoc. Geograph., 106 (2016) 572–596. https://doi.org/10.1080/24694452.2016.1142857.

    Article  Google Scholar 

  54. Y. Chauvier, N. E. Zimmermann, G. Poggiato, D. Bystrova, P. Brun and W.Thuiller, Novel methods to correct for observer and sampling bias in presence-only species distribution models. Global Ecol. Biogeogr. (2021). https://doi.org/10.1111/geb.13383.

    Article  Google Scholar 

  55. A.J.H. van Dijke, I. Benedict, K. Mallick, M. Herold, M. Machwitz, M. Schlerf and A.J. Teuling, The 'global tree restoration potential': a first estimation of the hydrological effects (2021). https://ui.adsabs.harvard.edu/abs/2021EGUGA..23.7697H.

  56. Bureau International des Poids et Mesures (BIPM), Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Int. Organ. Stand. Geneva ISBN: BIPM, International Bureau of Weights and Measures. 50: 134p. (2008). https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6.

  57. C. Landrum, A. Castrignanò, T. Mueller, D. Zourarakis, J. Zhu and D. De Benedetto, An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agric. Water Manag., 147 (2015) 144–153. https://doi.org/10.1016/j.agwat.2014.07.013.

    Article  Google Scholar 

  58. P. Mairota, B. Cafarelli, L. Boccaccio, V. Leronni, R. Labadessa, V. Kosmidou, H. Nagendra, Using landscape structure to develop quantitative baselines for protected area monitoring. Ecol. Indic., 33 (2013) 82–95. https://doi.org/10.1016/j.ecolind.2012.08.017.

    Article  Google Scholar 

  59. P. Picuno, G. Cillis and D. Statuto, Investigating the time evolution of a rural landscape: How historical maps may provide environmental information when processed using a GIS. Ecol. Eng., 139 (2019) 105580. https://doi.org/10.1016/j.ecoleng.2019.08.010.

    Article  Google Scholar 

  60. K.-H. Erb, S. Luyssaert, P. Meyfroidt, J. Pongratz, A. Don, S. Kloster, T. Kuemmerle, T. Fetzel, R. Fuchs, M. Herold, H. Haberl, C.D. Jones, E. Marín-Spiotta, I. McCallum, E. Robertson, V. Seufert, S. Fritz, A. Valade, A. Wiltshire and A.J. Dolman, Land management: data availability and process understanding for global change studies. Global Change Biol., 23 (2017) 512–533. https://doi.org/10.1111/gcb.13443.

    Article  ADS  Google Scholar 

  61. R. Haines-Young, M. Potschin and F. Kienast, Indicators of ecosystem service potential at European scales: mapping marginal changes and trade-offs. Ecol. Indic., 21 (2012) 39–53. https://doi.org/10.1016/j.ecolind.2011.09.004.

    Article  Google Scholar 

  62. Instituto Brasileiro de Geografia E Estatística (IBGE), Pesquisa Nacional por Amostra de Domicílios Contínua: notas técnicas. Rio de Janeiro: Ministério da Economia/IBGE. (2020). https://biblioteca.ibge.gov.br/visualizacao/livros/liv101708_notas_tecnicas.pdf.

  63. Instituto Brasileiro de Geografia E Estatística (IBGE), Projeções da população: Brasil e Unidades da Federação – revisão 2018. 2. RIO DE JANEIRO: IBGE. (2018). ISBN: 9788524044649.

  64. Instituto Brasileiro de Geografia E Estatística (IBGE), Manuais Técnicos em Geociências (n.12): manual de procedimentos técnicos para fiscalização, controle de qualidade e validação da base cartográfica contínua na escala 1:250000. RIO DE JANEIRO: IBGE. (2011), https://biblioteca.ibge.gov.br/visualizacao/livros/liv96663.pdf.

  65. Instituto Brasileiro de Geografia E Estatística (IBGE), Descrição do plano de amostragem e do método de estimação In Instituto Brasileiro de Geografia e Estatística (IBGE) (Ed.), Metodologia da Pesquisa Nacional por Amostras de Domicílio na Década de 70. (1981) IBGE.

  66. E.C. Ellis, N.R. Magliocca, C.J. Stevens and D.Q. Fuller, Evolving the Anthropocene: linking multi-level selection with long-term social–ecological change. Sustain. Sci., 13 (2018) 119–128. https://doi.org/10.1007/s11625-017-0513-6.

    Article  Google Scholar 

  67. Instituto Brasileiro de Geografia E Estatística (IBGE), Censo Demográfico 2010. (2010) https://sidra.ibge.gov.br/pesquisa/censo-demografico/demografico-2010/inicial.

  68. R. Trappes, Defining the Niche for Niche Construction: Evolutionary and Ecological Niches. Forthcoming in Biology and Philosophy, (2021). pp. 1–17. https://doi.org/10.1007/s10539-021-09805-2.

  69. Instituto Brasileiro de Geografia E Estatística (IBGE), Estimativas da população residente para os Municípios e para as Unidades da Federação brasileiros com data de referência em 1° de julho de 2019. Rio de Janeiro: IBGE. (2019a) https://biblioteca.ibge.gov.br/visualizacao/livros/liv101662.pdf.

  70. A.A. Plowright, N.C. Coops, C.M. Chance, S.R.J. Sheppard and N.W. Aven, Multi-scale analysis of relationship between imperviousness and urban tree height using airborne remote sensing. Remote Sens. Environ., 194 (2017) 391–400. https://doi.org/10.1016/j.rse.2017.03.045.

    Article  ADS  Google Scholar 

  71. E.C. Ellis and Z. Mehrabi, Half Earth: promises, pitfalls, and prospects of dedicating Half of Earth’s land to conservation. Curr. Opin. Environ. Sustain., 38 (2019) 22–30. https://doi.org/10.1016/j.cosust.2019.04.008.

    Article  Google Scholar 

  72. N.R. Magliocca and E.C. Ellis, Using pattern-oriented modeling (POM) to Cope with Uncertainty in Multi-scale Agent-based Models of Land Change. Trans. GIS, 17 (2013) 883–900. https://doi.org/10.1111/tgis.12012.

    Article  Google Scholar 

  73. G. Goldbergs, S.R. Levick, M. Lawes and A. Edwards (2018). Hierarchical integration of individual tree and area-based approaches for savanna biomass uncertainty estimation from airborne LiDAR. Remote Sens. Environ., 205 (2018) 141–150. https://doi.org/10.1016/j.rse.2017.11.010.

    Article  ADS  Google Scholar 

  74. M.R. Parreira, J.C. Nabout, G. Tessarolo, M.D.S. Lima-Ribeiro and F.B. Teresa, Disentangling uncertainties from niche modeling in freshwater ecosystems. Ecol. Modell., 391 (2019) 1–8. https://doi.org/10.1016/j.ecolmodel.2018.10.024.

    Article  Google Scholar 

  75. F. Danielsen, M. Enghoff, M.K. Poulsen, M. Funder, P.M. Jensen and N.D. Burgess, The concept, practice, application, and results of locally based monitoring of the environment. BioScience, (2021). https://doi.org/10.1093/biosci/biab021.

    Article  Google Scholar 

  76. L. Olsson, H. Barbosa, S. Bhadwal, A. Cowie, K. Delusca, D. Flores-Renteria, K. Hermans, E. Jobbagy, W. Kurz, D. Li, D. J. Sonwa and L. Stringer, Land Degradation. In: P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H-O. Pörtner, D.C. Roberts, P. Zhai, R. Slade, S. Connors, R. Van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (Eds.). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems: IPCC. (2019) p. 345-436. https://www.ipcc.ch/srccl/chapter/chapter-4/.

  77. International Organization for Standardization (ISO), ISO 14001:2015: Environmental management systems — Requirements with guidance for use. ISO: ISO/TC 207/SC 1 Environmental management systems: 35p. ICS: 03.100.70 Management systems/13.020.10 Environmental management (2015).

  78. International Organization for Standardization (ISO), ISO 9001:2015 Quality management systems — Requirements. ISO/TC 176/SC 2 Quality systems: ISO: 29p. ICS: 03.100.70 Management systems / 03.120.10 Quality management and quality assurance (2015).

  79. Instituto Brasileiro de Geografia E Estatística (IBGE) (2014). Projeto de reformulação das pesquisas domiciliares do IBGE: aspectos metodológicos do rendimento domiciliar per capita para atendimento a Lei Complementar nº 143/2013 (Fundo de Participação dos Estados e do Distrito Federal FPE), in 15º Fórum do Sistema Integrado de Pesquisas Domiciliares – SIPD. Rio de Janeiro.

  80. K.J. Bagstad, D.J. Semmens, S. Waage and R. Winthrop, A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv., 5 (2013) 27–39.

    Article  Google Scholar 

  81. G. Jia, E. Shevliakova, P. Artaxo, N. de Noblet-Ducoudré, R. Houghton, J. House, K. Kitajima, C. Lennard, A. Popp, A. Sirin and R. Sukumar, L. Verchot, Land–climate interactions. In: P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley (Eds.). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC: IPCC, cap. 2, (2019) p.131-247. https://www.ipcc.ch/srccl/chapter/chapter-2/.

Download references

Acknowledgements

This research was funded by the National Support Program for the Development of Metrology, Quality and Technology (PRONAMETRO) of the National Institute of Metrology, Quality and Technology (INMETRO), located in the State of Rio de Janeiro (Brazil). We are immensely grateful to the Brazilian Institute of Geography and Statistics (IBGE-Brazil) for the free and online supply of all material related to the Brazilian census method, without which this work would not have been conceived. Furthermore, thanks are due to the Laboratory for Anthropogenic Landscape Ecology of the University of Maryland, Baltimore Country, USA, for the bibliographic contribution regarding the modeling of anthropogenic biomes, which allowed the structuring of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximiliano S. L. A. Gobbo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Investigated documents referring to the census method. Source: the authors.

Method and Results

Documents

Demographic census methodology

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE); Manuais técnicos em Geociências número 14: acesso e uso de dados geoespaciais. Rio de Janeiro, IBGE, 143 p., 2019

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE); Metodologia do censo demográfico 2010. IBGE, Rio de Janeiro, 712p., 2013

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA; Estimativas da População Residente para os Municípios e para as Unidades da Federação Brasileiros com Data de Referência em 1º de julho de 2019. Ministério da Economia e Instituto Brasileiro de Geografia e Estatística (IBGE), 2019

Demographic census results

http://www.metadados.geo.ibge.gov.br/geonetwork_ibge/srv/por/main.home

https://sidra.ibge.gov.br/tabela/1298

https://sidra.ibge.gov.br/tabela/1288

https://sidra.ibge.gov.br/tabela/608

https://sidra.ibge.gov.br/tabela/1286

https://sidra.ibge.gov.br/tabela/1294

https://sidra.ibge.gov.br/tabela/1309

https://sidra.ibge.gov.br/tabela/3107

https://sidra.ibge.gov.br/tabela/1301

Appendix 2

Synthesis of the transposition of method validation parameters. Source: the authors.

Validation parameter

Metrological definition of the validation parameter

Correlation of the metrological concept with characteristics of the demographic method

Specificity

Ability of the method to generate a signal only for the product of interest

Specific characteristic of the population

Selectivity

Ability of the method to generate responses for different components of interest, but which are distinguishable from each other

Different characteristics in the investigated population that can be individualized

Working range

Used to demonstrate that the results produced by the method are provided with acceptable precision and accuracy in the range in which it is operated

Ability of the method to produce geographic information within the standard of acceptance of results, which is established in synergy between the institution responsible for the standard method and the reference institutions

Linearity

Associated with the working range, it refers to the method's ability to produce linear responses within the investigated operating range

Ability to describe trait(s) in different population sizes

Detection limit

It refers to the smallest amount of information identified in a particular investigated sector, but that cannot be quantified for the acceptance standards established for the methods

Minimum number of individuals to be censused to obtain information on the population, according to the area of operation

Quantification limit

Less amount of information needed to identify a certain characteristic in the investigated sector

Minimum number of individuals censused to obtain population information, with confidence established for the method

Accuracy (Recovery + Precision > Precision = Repeatability + Intermediate Precision + Reproducibility)

Ability of the method to produce results close to real values (true values)

Ability of the method to estimate a given characteristic of the census population against the real value of the characteristic

Recovery

Comparison of the average of the results generated by the method to a reference value (trend analysis – bias), normally carried out by Certified Reference Materials (CRMs)

Comparison with other demographic operations, using growth rates for estimation

Repeatability

Degree of agreement between results obtained by the same method in the same area, with a short space between measurements/estimations, being performed by the same operator

Sequential tests performed before the census operation

Intermediate precision

Degree of agreement between the results, varying pre-established characteristics during the information measurement/estimation process

Variation of census takers and the census time interval as sources of variation in the census method

Reproducibility

Degree of agreement between results for the same scope, varying operators, and areas/sectors

Degree of agreement between the results obtained by the different census takers and in the different census sectors, to cover the entire population

Adequacy to mathematical models

Possibility of establishing a mathematical model to methods response

Estimation model represents a mathematical model, which is based on calculated population growth rates

Appendix 3

Synthesis of the transposition of tools to guarantee the validity of internal results. Source: the authors.

Tool to guarantee the validity of internal results

Metrological definition of the tool for guarantee of validity of internal results

Correlation of the metrological concept with characteristics of demographic methods

Use of reference materials or materials for quality control

Use of established standards for the methods as a resource to analyze the quality of the information produced

Use of population growth rates calculated based on previous census operations and which are used to assess the quality of results obtained in the present census operation

Using alternative calibrated instrumentation to provide traceable results

Instruments used in conjunction with methods to generate traceable and comparable results with other institutions

Use of statistical resources to estimate the population, as well as other tools that help to compare national and international demographic results

Functional checks of measuring and testing equipment

Temporal analysis of the instruments used in the methods, evaluating their ability to produce results within acceptance standards

Systems used in the census operation, enabling operators to verify problems during the operation and analyze compliance with acceptance standards

Use of check patterns or work patterns with control charts, when applicable

Mechanisms used to check the instruments used by the methods, as well as the results they produce

Operation monitoring systems are examples of checking patterns, pointing out information through the census indicators and about the census process

Intermediate checks on measuring equipment

This tool reflects actions taken during the execution of the methods, resulting in the minimum standard for acceptance of the result

Indicators as tools for the intermediate checks of the census, as they are intricately linked to the questionnaires applied in the census operation

Replicated tests or calibrations, using the same or different methods

Tests performed on methods to produce results and demonstrate the adequacy of the resources used to generate them

Tests performed prior to the application of the demographic method are mechanisms to calibrate the method, to generate results that fall within the scope of the action

Retest or recalibration of retained items

Carrying out actions to reassess the results obtained by the methods

Performing the reapplication of the questionnaire (sampling) in households where the information was not properly collected or not collected is a mechanism to retest the retained item

Correlation of Results from Different Characteristics of an Item

Interpolation of different characteristics of the same investigated object

The questionnaires applied must have different characteristics on the census population

Critical analysis of reported results

Study performed on the results produced by the methods, to validate them or not

Evaluation of census indicators during operation. After the operation, the comparative analysis of the results obtained with those estimated (which use the growth rates calculated through other census operations)

Intralaboratory Comparisons

Comparison of results obtained by the result producer

In addition, comparison with data obtained from other census operations

Testing of blind sample(s)

Tests performed using unknown data

Lack of knowledge of the population before the census to determine a given demographic characteristic

Appendix 4

Metadata (Tables

Table 3 Tables consulted on the SIDRA Portal (IBGE).

3,

Table 4 Numerical results of the 2010 Demographic Census—Brazil Level and Major Regions.

4,

Table 5 Numerical results of the 2010 Demographic census—federation units: North.

5,

Table 6 Numerical results of the 2010 demographic census—federation units: Northeast.

6,

Table 7 Numerical results of the 2010 demographic census—federation units: Southeast.

7,

Table 8 Numerical results of the 2010 Demographic Census—Federation Units: South.

8,

Table 9 Numerical Results of the 2010 Demographic Census—Federation Units: Midwest.

9,

Table 10 Numerical results of the 2010 Demographic Census – Resident Population by Area Location: Brazil.

10,

Table 11 Numerical results of the 2010 Demographic Census—Resident Population by Area Location: Major Regions.

11,

Table 12 Numerical results of the 2010 Demographic Census—Resident Population by Area Location: North.

12,

Table 13 Numerical results of the 2010 Demographic Census—Resident Population by Area Location: Northeast.

13,

Table 14 Numerical results of the 2010 Demographic Census—Resident Population by Area Location: Southeast and Midwest.

14,

Table 15 Numerical results of the 2010 Demographic Census—Resident Population by Area Location: South.

15,

Table 16 Numerical results of the 2010 demographic census—Resident Population in the State of Rio de Janeiro—Population distributed by municipalities.

16,

Table 17 Standard error and approximate coefficient of variation estimate for some sizes of estimates of characteristics of persons and households—Brazil.

17).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobbo, M.S.L.A., de Oliveira Araujo, T. & Salema, C.O.F. Critical Analysis of Demographic Data Based on ISO/IEC 17,025 Standard for the Regionalization of Brazilian Anthromes. MAPAN 38, 83–109 (2023). https://doi.org/10.1007/s12647-022-00573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00573-2

Keywords

Navigation