Skip to main content
Log in

The Influence of pH/Salt Concentrations on Tuning Lower Critical Solution Temperature of Poly(NIPAAm-co-DMAA-co-DTBAVA) Multi-Environmentally Terpolymer

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

New series of thermo-pH multi-responsive terpolymers were fabricated. Cationic acrylate monomer was synthesized and named by [2-((ditert-butylamino)methyl)-4-formyl-6-methoxyphenyl acrylate] and abbreviated as (DTBAVA). 1H NMR and 13C NMR investigated the new compounds and FT IR. The new terpolymers were fabricated by the free radical polymerization of N-isopropylacrylamide NIPAAm, 10 mol% N, N-dimethylacrylamide and 5, 10, and 20 mol% DTBAVA. The investigation process involved the chemical method such as 1H NMR and FT IR; physical methods for the solid terpolymers as glass temperature by DSC, polymer degradation by TGA, and polymer crystallinity via XRD. GPC was performed for molecular weights and dispersity; contact angles for identifying the hydrophilic or hydrophobic terpolymers solutions. The lower critical solution temperatures Tc,s, and cloud points Cp,s of terpolymers were recorded considering the impact of pH solutions and the concentrations of different sodium salts of (SO4−2, Cl−1, and SCN−1) in the Hofmeister series; turbidity measurements were used via UV/vis spectroscopy and micro-DSC. In a new optimization study, we will use these terpolymers in the post-polymerization with biomolecules such as chitosan, protein, and amino acids via Schiff base.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdelaty MSA (2020) Influence of vanillin acrylate and 4-acetylphenyl acrylate hydrophobic functional monomers on phase separation of N-isopropylacrylamide environmental terpolymer: fabrication and characterization. Polym Bull 77:2905–2922. https://doi.org/10.1007/s00289-019-02890-0

    Article  CAS  Google Scholar 

  2. Abdelaty MSA (2021) Trends in the phase separation temperature optimization of a functional and thermo-pH responsive terpolymer of poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) acrylamide-co-vanillin Acrylate). J Polym Environ. https://doi.org/10.1007/s10924-021-02096-4

    Article  Google Scholar 

  3. Herbert M, Nikita TT (2022) Stimuli-responsive polymers and their applications in separation science. React Funct Polym 175:105282. https://doi.org/10.1016/j.reactfunctpolym.2022.105282

    Article  CAS  Google Scholar 

  4. Fang FF, Lee BM, Choi HJ (2010) Electrorheologically intelligent polyaniline and its composites. Macromol Res 18:99–112. https://doi.org/10.1007/s13233-009-0198-5

    Article  CAS  Google Scholar 

  5. Abdelaty MSA, Kuckling D (2016) Synthesis and characterization of new functional photo cross-linkable smart polymers containing vanillin derivatives. Gels 2:1–13. https://doi.org/10.3390/gels2010003

    Article  CAS  Google Scholar 

  6. Chuan-Ling Zhang F-H, Cao J-L, Zhi-Long Yu, Ge J, Yang Lu, Wang Z-H, Shu-Hong Yu (2017) Highly, stimuli-responsive au nanorods/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel for smart switch. ACS Appl Mater Interfaces 9(29):24857–24863. https://doi.org/10.1021/acsami.7b05223

    Article  CAS  PubMed  Google Scholar 

  7. Fabrice O, Mohamad T, Noureddine L, Émilie G, Denis M, Abdelhamid E (2021) pH-sensitive polymers: classification and some fine potential applications. Polym Adv Technol 32(4):1455–1484. https://doi.org/10.1002/pat.5230

    Article  CAS  Google Scholar 

  8. Ilgin P, Ozay H, Ozay O (2020) Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27:251. https://doi.org/10.1007/s10965-020-02231-0

    Article  CAS  Google Scholar 

  9. Abdelaty MSA (2021) A Facile Method for the Preparation of Hydrophilic-Hydrophobic Functional Thermo-pH Responsive Terpolymers Based on Poly (NIPAAm-co-DMAA-co-DMAMVA) and Post-polymerization. J Polym Environ 29:3227–3241. https://doi.org/10.1007/s10924-021-02117-2

    Article  CAS  Google Scholar 

  10. Ghilan A, Chiriac AP, Nita LE et al (2020) Trends in 3D printing processes for biomedical field: opportunities and challenges. J Polym Environ 28:1345–1367. https://doi.org/10.1007/s10924-020-01722-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Low SC, Ng QH, Tan LS (2019) Study of magnetic-responsive nanoparticle on the membrane surface as a membrane antifouling surface coating. J Polym Res 26:70. https://doi.org/10.1007/s10965-019-1734-4

    Article  CAS  Google Scholar 

  12. Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Ghahramanzadeh Asl H, Mahdieh Z, Bozorgomid M, Ghasemi A, Boyuk RT, Hamblin MR (2016) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 8(33):21107–21133. https://doi.org/10.1021/acsami.6b00371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249. https://doi.org/10.1016/0079-6700(92)90023-R

    Article  CAS  Google Scholar 

  14. Halperin A, Kröger M, Winnik FM (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed Engl 54(51):15342–15367. https://doi.org/10.1002/anie.201506663

    Article  CAS  PubMed  Google Scholar 

  15. Heskins M, Guillet JE (1968) Solution properties of Poly(N-isopropylacrylamide). J Macromol Sci Part A 2(8):1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  16. Minwoo N, Sunah K, Yeongbong M, So JC, Jeongseon P, Jannick K, Ji-Hun S, Yan L (2016) Upper critical solution temperature (UCST) phase transition of halide salts of branched polyethylenimine and methylated branched polyethylenimine in aqueous solutions. Chem Commun 52:509–512. https://doi.org/10.1039/C5CC08005C

    Article  CAS  Google Scholar 

  17. Jukka N, Heikki T (2017) How to manipulate the upper critical solution temperature (UCST)? Polym Chem 8:220–232. https://doi.org/10.1039/C6PY01612J

    Article  CAS  Google Scholar 

  18. Lanzalaco S, Armelin E (2017) Poly(N-isopropylacrylamide) and copolymers: a review on recent progresses in biomedical applications. Gels 3(4):36

    Article  Google Scholar 

  19. Abdelaty MSA (2021) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4-methylphenyl acrylate) thermo-ph responsive copolymer: trend in the lower critical solution temperature optimization of Poly (N-isopropyylacrylamide). J Polym Res 28:213. https://doi.org/10.1007/s10965-021-02574-2

    Article  CAS  Google Scholar 

  20. Abdelaty MSA (2020) The Effect Hydrophilic/Hydrophobic Interaction of 2-((Dimethylamino)methyl)-4-formyl-6 methoxyphenyl Acrylate and 4-Acetylphenyl Acrylate Monomers on the Phase Transition Temperature of N-isopropylacrylamide Terpolymers. J Polym Environ 28:2584–2598. https://doi.org/10.1007/s10924-020-01790-z

    Article  CAS  Google Scholar 

  21. David JM, Meri A, Christine B, Vikram SR, George PS, Joel FH, Gil G (2022) Thermoresponsive Poly(N-isopropylacrylamide) grafted from cellulose nanofibers via silver-promoted decarboxylative radical polymerization. Biomacromol 23(4):1610–1621. https://doi.org/10.1021/acs.biomac.1c01444

    Article  CAS  Google Scholar 

  22. Abdelaty MSA (2018) Preparation and characterization of new environmental functional polymers based on vanillin and N-isopropylacrylamide for post polymerization. J Polym Environ 26:636–646. https://doi.org/10.1007/s10924-017-0960-2

    Article  CAS  Google Scholar 

  23. Avraham H, Martin K, FranÅoise MW (2015) Poly(N-isopropylacrylamide) phase diagrams: fifty years of research. Angew Chem Int Ed 54:15342–15367. https://doi.org/10.1002/anie.201506663

    Article  CAS  Google Scholar 

  24. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin (Part 2): temperature responsive layer A, functional, temperature and pH layer B. Polym Bull 11:4837–4858. https://doi.org/10.1007/s00289-018-2297-y

    Article  CAS  Google Scholar 

  25. Abdelaty MSA (2020) The Influence of vanillin acrylate derivative on the phase separation temperature of environmental photo-cross-linked N-isopropylacrylamide copolymer and hydrogel thin films. J Polym Environ 28:2599–2615. https://doi.org/10.1007/s10924-020-01793-w

    Article  CAS  Google Scholar 

  26. Choi C, Jang MK, Nah JW (2007) Preparation and characterization of nanoparticles using poly(N-isopropylacrylamide)-poly(ε-caprolactone) and poly(ethylene glycol)-poly(ε-caprolactone) block copolymers with thermosensitive function. Macromol Res 15:623–632. https://doi.org/10.1007/BF03218942

    Article  CAS  Google Scholar 

  27. Xu F, Yan TT, Luo YL (2011) Synthesis and micellization of thermosensitive PNIPAAm-b-PLA amphiphilic block copolymers based on a bifunctional initiator. Macromol Res 19:1287–1295. https://doi.org/10.1007/s13233-011-1209-x

    Article  CAS  Google Scholar 

  28. Xiaowei W, Yaxuan G, Qi L, Yapeng X, Yifan S, Zheran W, Mingyu X, Ji L, Dongkai W (2022) Synergistic chemo-photothermal cancer therapy of pH-responsive polymeric nanoparticles loaded IR825 and DTX with charge-reversal property. Colloids Surf, B 209(2):112164. https://doi.org/10.1016/j.colsurfb.2021.112164

    Article  CAS  Google Scholar 

  29. Orakdogen N, Celik T (2016) Ion-stimuli responsive dimethylaminoethyl methacrylate/hydroxyethyl methacrylate copolymeric hydrogels: mutual influence of reaction parameters on the swelling and mechanical strength. J Polym Res 23(57):1–17. https://doi.org/10.1007/s10965-016-0946-0

    Article  CAS  Google Scholar 

  30. Kyobum K, William CWC, Yunhoe H, Yadong W (2016) Polycations and their biomedical applications. Prog Polym Sci 60:18–50. https://doi.org/10.1016/j.progpolymsci.2016.05.004

    Article  CAS  Google Scholar 

  31. Reyes-Ortega, F (2014) pH-responsive polymers: properties, synthesis and applications. In: Aguilar MR, Román JS, Smart Polymers and their Applications, Woodhead Publishing, pp 45–92. https://doi.org/10.1533/9780857097026.1.45.

  32. Gupta P, Purwar R (2020) Electrospun pH responsive poly (acrylic acid-co- acrylamide) hydrogel nanofibrous mats for drug delivery. J Polym Res 27:296. https://doi.org/10.1007/s10965-020-02236-9

    Article  CAS  Google Scholar 

  33. Yoshida E (2018) Preparation of giant vesicles containing quaternary ammonium salt of 2-(dimethylamino)ethyl methacrylate through photo nitroxide-mediated controlled/living radical polymerization-induced self-assembly. J Polym Res 25:109. https://doi.org/10.1007/s10965-018-1509-3

    Article  CAS  Google Scholar 

  34. Annika H, Juan MG, Gabriel SL (2018) Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules 51(20):8205–8216. https://doi.org/10.1021/acs.macromol.8b01876

    Article  CAS  Google Scholar 

  35. Najafipour A, Mahdavian AR, Aliabadi HS et al (2020) Dual thermo- and pH-responsive poly(N-isopropylacrylamide-co-(2-dimethylamino) ethyl methacrylate)-g-PEG nanoparticle system and its potential in controlled drug release. Polym Bull 77:3129–3142. https://doi.org/10.1007/s00289-019-02895-9

    Article  CAS  Google Scholar 

  36. Siddique AB, An JW, Kim HJ et al (2017) Synthesis of dual stimuli-responsive polymers through atom transfer radical mechanism in aqueous media. Macromol Res 25:70–78. https://doi.org/10.1007/s13233-017-5004-1

    Article  CAS  Google Scholar 

  37. Adeli F, Abbasi F, Babazadeh M et al (2022) Thermo/pH dual-responsive micelles based on the host–guest interaction between benzimidazole-terminated graft copolymer and β-cyclodextrin-functionalized star block copolymer for smart drug delivery. J Nanobiotechnol 20:91. https://doi.org/10.1186/s12951-022-01290-3

    Article  CAS  Google Scholar 

  38. Abdelaty MSA (2018) Environmental functional photo-cross-linked hydrogel bilayer thin films from vanillin. J Polym Environ 26:2243–2256. https://doi.org/10.1007/s10924-017-1126-y

    Article  CAS  Google Scholar 

  39. Abdelaty MSA (2018) Poly(N-isopropylacrylamide-co-2-((diethylamino)methyl)-4 formyl-6-methoxyphenylacrylate) environmental functional copolymers: synthesis, characterizations, and grafting with amino acids. Biomolecules 8:138

    Article  Google Scholar 

  40. Abdelaty MSA (2019) Layer by layer photo-cross-linked environmental functional hydrogel thin films based on vanillin: part 3. J Polym Environ 27:1212–1225. https://doi.org/10.1007/s10924-019-01421-2

    Article  CAS  Google Scholar 

  41. Maxence F, Emilie D, Vincent B, Rémi A, Sylvain C, Bernard B (2014) Vanillin, a promising biobased building-block for monomer synthesis. Green Chem 16:1987–1998. https://doi.org/10.1039/C3GC42613K

    Article  Google Scholar 

  42. Robin K, Volkmar MS, Carsten C, Dominik M, Detlef S, Jens T (2021) Electrochemical synthesis of biobased polymers and polymer building blocks from vanillin. RSC Adv 11:8970–8985. https://doi.org/10.1039/D1RA00649E

    Article  Google Scholar 

  43. Shen Z, Terao K, Maki Y, Dobashi T, Ma G, Yamamoto T (2006) Synthesis and phase behavior of aqueous poly(N-isopropylacrylamide-co-acrylamide), poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate). Colloid Polym Sci 284(9):1001–1007. https://doi.org/10.1007/s00396-005-1442-y

    Article  CAS  Google Scholar 

  44. Akhmetzhan A, Myrzakhmetova N, Amangeldi N, Kuanyshova Z, Akimbayeva N, Dosmaganbetova S, Toktarbay Z, Longinos SN (2021) A short review on the N,N-dimethylacrylamide-based hydrogels. Gels 7(4):234. https://doi.org/10.3390/gels7040234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yinlei L, Shuoqi W, Sheng S, Yaoheng L, Yisheng X, Huawen H, Jie L, Haichen Z, Guangji L (2021) Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel. RSC Adv 11:32988–32995. https://doi.org/10.1039/D1RA05896G

    Article  Google Scholar 

  46. Hofmeister F (1888) Zur Lehre von der Wirkung der Salze. Arch Exp

  47. Von Hippel PH, Schleich T (1969) Ion effects on the solution structure of biological macromolecules. Acc Chem Res 2:257. https://doi.org/10.1021/ar50021a001

    Article  Google Scholar 

  48. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658. https://doi.org/10.1016/j.cbpa.2006.09.020

    Article  CAS  PubMed  Google Scholar 

  49. Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1–18. https://doi.org/10.1016/j.cocis.2004.05.004

    Article  CAS  Google Scholar 

  50. Zhang Y, Furyk S, Sagle LB, Cho Y, Bergbreiter DE, Cremer PS (2007) Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J Phys Chem C 111:8916. https://doi.org/10.1021/jp0690603

    Article  CAS  Google Scholar 

  51. Shirin F, Nodar A-M, Kaizheng Z, Anna-Lena K, Bo N (2012) Effects of Hofmeister anions on the flocculation behavior of temperature-responsive poly(N-isopropylacrylamide) microgels. Colloid Polym Sci 290:1609–1616. https://doi.org/10.1007/s00396-012-2689-8

    Article  CAS  Google Scholar 

  52. Maria CMC, Sérgio MCS, Filipe EA (2015) Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: a rheological study. J Mol Liquids 210:113–118. https://doi.org/10.1016/j.molliq.2015.02.008

    Article  CAS  Google Scholar 

  53. Liusheng Z, Jianhua H, Changchun W, Shoukuan F, Meifang L (2002) The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamideco-dimethylaminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121. https://doi.org/10.1007/s00396-002-0734-8

    Article  CAS  Google Scholar 

  54. Younhee C, Yanjie Z, Trine C, Laura BS, Ashutosh C, Cremer PS (2008) Effects of hofmeister anions on the phase transition temperature of elastin-like polypeptides. J Phys Chem B 112:13765–13771

    Article  Google Scholar 

  55. Pérez E, Bello A, Pereña JM (1988) Substituent effect on the glass transition temperature of polyoxetanes. Polym Bull 20:291–296. https://doi.org/10.1007/BF00261983

    Article  Google Scholar 

  56. Doumeng M, Makhlouf L, Berthet F, Marsan O, Delbé K, Denape J, Chabert F (2021) A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym Testing 93:106878. https://doi.org/10.1016/j.polymertesting.2020.106878

    Article  CAS  Google Scholar 

  57. Law KY (2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 20:686–688. https://doi.org/10.1021/jz402762h

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I want to thank the University of Paderborn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Momen S. A. Abdelaty.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaty, M.S.A. The Influence of pH/Salt Concentrations on Tuning Lower Critical Solution Temperature of Poly(NIPAAm-co-DMAA-co-DTBAVA) Multi-Environmentally Terpolymer. J Polym Environ 30, 4130–4145 (2022). https://doi.org/10.1007/s10924-022-02502-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02502-5

Keywords

Navigation