Skip to main content
Log in

Dynamics of Liquid Nitrogen in a Closed Vessel in the Presence of Helium Pressurization Gas

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In closed vessels with a cryogenic liquid, the heat gain from the environment leads to increase in the pressure in the vessel and self-heating of the liquid in the vessel. This problem is topical in storage and transportation of liquefied natural gas (LNG), for start-up refueling facilities of space rocket, and for a number of other applications of cryogenic liquids. A characteristic feature of these systems is the presence of significant temperature stratification in the upper layers of the cryogenic liquid volume. An experimental study was made of the dynamics of liquid nitrogen evaporation in a closed vessel under conditions of pressurization with helium gas up to a pressure of 0.35 MPa. The experiments were carried out in a cylindrical vessel with a height of 650 mm and an inner diameter of 213 mm at a filling of 82%. The study has shown that the stage of pressurization with helium intensifies the convective heat transfer between the interfacial surface and the vapor-gas medium in the upper part of the vessel. At the stage of subsequent heating of the liquid, two modes of heat transfer from the heat-generating walls of the vessel to the liquid are realized sequentially: with a high heat transfer coefficient at the first stage and with a significantly lower heat transfer rate at the second stage. As a result, at the stage of change of these heat transfer regimes, a sharp decrease in the intensity of liquid nitrogen evaporation is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Kumar, S., Prasad, B., Venkatarathnam, G., Ramamurthi, K., and Murthy, S., Influence of Surface Evaporation on Stratification in Liquid Hydrogen Tanks of Different Aspect Ratios, Int. J. Hydrogen Energy, 2007, vol. 32, no. 12, pp. 1954–1960; DOI: 10.1016/j.ijhydene.2006.08.052.

    Article  Google Scholar 

  2. Barsi, S. and Kassemi, M., Numerical and Experimental Comparisons of the Self-Pressurization Behavior of an LH2 Tank in Normal Gravity, Cryogenics, 2008, vol. 48, nos. 3/4, pp. 122–129; DOI: 10.1016/j.cryogenics.2008.01.003.

    Article  ADS  Google Scholar 

  3. Kang, M., Kim, J., You, H., and Chang, D., Experimental Investigation of Thermal Stratification in Cryogenic Tanks, Exper. Thermal Fluid Sci., 2018, vol. 96, pp. 371–382; DOI: 10.1016/j.expthermflusci.2017.12.017.

    Article  Google Scholar 

  4. Seo, M. and Jeong, S., Analysis of Self-Pressurization Phenomenon of Cryogenic Fluid Storage Tank with Thermal Diffusion Model, Cryogenics, 2010, vol. 50, no. 9, pp. 549–555; DOI: 10.1016/ j.cryogenics.2010.02.021.

    Article  ADS  Google Scholar 

  5. Vishnu, S., Bhowmick, S., and Kuzhiveli, B., Experimental and Numerical Investigation of Stratification and Self-Pressurized in a High Pressure Liquid Nitrogen Storage Tank, Energy Sources, Part A: Recovery, Util. Envir. Effects, 2019, pp. 1–15; 10.1080/15567036.2019.1651424.

    Article  Google Scholar 

  6. Joseph, J., Agrawal, G., Agarwal, D.K., Pisharady, J., and Kumar, S., Effect of Insulation Thickness on Pressure Evolution and Thermal Stratification in a Cryogenic Tank, Appl. Thermal Engin., 2017, vol. 111, pp. 1629–1639; DOI: 10.1016/j.applthermaleng.2016.07.015.

    Article  Google Scholar 

  7. Zuo, Z., Jiang, W., Qin, X., and Huang, Y., A Numerical Model for Liquid-Vapor Transition in Self-Pressurized Cryogenic Containers, Appl. Thermal Engin., 2021, vol. 111, no. 117005; DOI: 10.1016/ j.applthermaleng.2021.117005.

    Article  Google Scholar 

  8. Wang, L., Ye, S., Ma, Y., Wang, J., and Li, Y., CFD Investigation on Helium Pressurization Behaviors in Liquid Hydrogen Tank, Int. J. Hydrogen Energy, 2017, vol. 42, no. 52, pp. 30792–30803; DOI: 10.1016/j.ijhydene.2017.10.145.

    Article  Google Scholar 

  9. Zuo, Z., Jiang, W., Qin, X., and Huang, Y., Numerical Investigation on Full Thermodynamic Venting Process of Liquid Hydrogen in an On-Orbit Storage Tank, Int. J. Hydrogen Energy, 2017, vol. 45, no. 51, pp. 27792–27805; DOI: 10.1016/j.ijhydene.2020.07.099.

    Article  Google Scholar 

  10. Vishnu, S.B. and Kuzhiveli, B.T., Effect of Micro- and Elevated Gravity Condition on the Evolution of Stratification and Self-Pressurization in a Cryogenic Propellant Tank, Sadhana —Academy Proc. Engin. Sci., 2019, vol. 44, no. 3, p. 63; DOI: 10.1007/s12046-018-1034-4.

    Article  MathSciNet  Google Scholar 

  11. Wang, B., Qin, X., Jiang, W., Li, P., Sun, P., Sun, P., and Huang, Y., Numerical Simulation on Interface Evolution and Pressurization Behaviors in Cryogenic Propellant Tank on Orbit, Microgravity Sci. Technol., 2020, vol. 32, no. 1, pp. 59–68; DOI: 10.1007/s12217-019-09734-6.

    Article  ADS  Google Scholar 

  12. Lei, W., Yanzhong, L., Yonghua, J., and Yuan, Y., Experimental Investigation on Pressurization Performance of Cryogenic Tank During High-Temperature Helium Pressurization Process, Cryogenics, 2015, vol. 66, pp. 43–52; DOI: 10.1016/j.cryogenics.2014.12.001.

    Article  ADS  Google Scholar 

  13. Mitikov, Yu. and Voloshin, M., Studies Refer to Liquid Oxygen Area of Liquid-Based Rocket Engine Fuel Systems, Kholodil’na Tekhnika Tekhnol., 2015, vol. 51, no. 4, pp. 60–64; DOI: 10.15673/0453-8307.4/2015.44787.

    Article  Google Scholar 

  14. Liu, Z., Li, Y., and Jin, Y., Pressurization Performance and Temperature Stratification in Cryogenic Final Stage Propellant Tank, Appl. Thermal Engin., 2016, vol. 106, pp. 211–220; DOI: 10.1016/ j.applthermaleng.2016.05.195.

    Article  Google Scholar 

  15. Lv, R., Huang, Y., and Wu, J., Thermodynamic Analysis of Partially Filled Hydrogen Tanks in a Wide Scale Range, Appl. Thermal Engin., 2021, vol. 193, no. 117007; DOI: 10.1016/j.applthermaleng.2021.117007.

    Article  Google Scholar 

  16. Pavlenko, A.N., Koverda, V.P., Skokov, V.N., Reshetnikov, A.V., Vinogradov, A.V., and Surtaev, A.S., Dynamics of Transition Processes and Structure Formation in Critical Heat-Mass Transfer Regimes During Liquid Boiling and Cavitation, J. Eng. Therm., 2009, vol. 18, no. 1, 20–38; DOI: 10.1134/ S1810232809010044.

    Article  Google Scholar 

  17. Pavlenko, A.N., Koverda, V.P., Reshetnikov, A.V., Surtaev, A.S., Tsoi, A.N., Mazheiko, N.A., Busov, K.A., and Skokov, V.N., Disintegration of Flows of Superheated Liquid Films and Jets, J. Eng. Therm., 2013, vol. 22, no. 3, pp. 174–193; DOI: 10.1134/S1810232813030028.

    Article  Google Scholar 

  18. Pavlenko, A.N., Koverda, V.P., Reshetnikov, A.V., Mazheiko, N.A., Surtaev, A. S., and Zhukov, V.E., Peculiarities of Superheated Liquid Discharging Under Strong and Weak Nonequilibrium Conditions, J. Eng. Therm., 2010, vol. 19, pp. 289–305; DOI: 10.1134/S1810232810040053.

    Article  Google Scholar 

  19. Volodin, O.A., Pecherkin, N.I., and Pavlenko, A.N., Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified Surfaces—A Review, High Temp., 2021, vol. 59, no. 2, pp. 248–276; DOI: 10.31857/S0040364421020149.

    Article  Google Scholar 

  20. Volodin, O.A., Pavlenko, A.N., and Pecherkin, N.I., Heat Transfer Enhancement on Multilayer and Combined with Other Surface Modifications Wire Mesh Coatings—A Review, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 563–596; DOI: 10.1134/S1810232821040020.

    Article  Google Scholar 

  21. Pavlenko, A.N. and Kuznetsov, D.V., Development of Methods for Heat Transfer Enhancement During Nitrogen Boiling to Ensure the Stabilization of HTS Devices, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 526–562; DOI: 10.1134/S1810232821040019.

    Article  Google Scholar 

  22. Pavlenko, A.N., Kuznetsov, D.V., and Bessmeltsev, V.P., Experimental Study on Heat Transfer and Critical Heat Flux during Pool Boiling of Nitrogen on 3D Printed Structured Copper Capillary-Porous Coatings, J. Eng. Therm., 2021, vol. 30, no. 3, pp. 341–349; DOI: 10.1134/S1810232821030012.

    Article  Google Scholar 

  23. Starodubtseva, I.P., Kuznetsov, D.V., and Pavlenko, A.N., Experiments and Modeling on Cryogenic Quenching Enhancement by the Structured Capillary-Porous Coatings of Surface, Int. J. Heat Mass Transfer, 2021, vol. 176, p. 121388; DOI: 10.1016/j.ijheatmasstransfer.2021.121388.

    Article  Google Scholar 

  24. Zhukov, V.I., Pavlenko, A.N., and Shvetsov, D.A., The Effect of Pressure on Heat Transfer at Evaporation/Boiling in a Thin Horizontal Liquid Layer on a Microstructured Surface Produced by 3D Laser Printing, Int. J. Heat Mass Transfer, 2020, vol. 163, pp. 120488-1–120488-14; DOI: 10.1016/ j.ijheatmasstransfer.2020.120488.

    Article  Google Scholar 

  25. Zhukov, V.I. and Pavlenko, A.N., Crisis of Nucleate Boiling in a Finite-Height Horizontal Layer of Liquid, J. Eng. Therm., 2020, vol. 29, no. 1, pp. 1–13; DOI: 10.1134/S1810232820010014.

    Article  Google Scholar 

  26. Zhukov, V.I. and Pavlenko, A.N., The Mechanism of Surface Cooling by a Horizontal Layer of Liquid at Low Reduced Pressures, AIP Advances, 2021, vol. 11, p. 015341; DOI: 10.1063/5.0023668.

    Article  ADS  Google Scholar 

  27. Trushlyakov, V.I., Urbansky, V.A., Pavlenko, A.N., Zhukov, V.E., and Sukhorukova, E.Yu., Experimental Studies of Unsteady Processes of Cryogenic Liquid Evaporation in Rocket Tank Model, Omsk Nauch. Vest. Ser. Aviats.-Raket. Energetich. Mashinostr., 2021, vol. 5, no. 4, pp. 89–98; DOI: 10.25206/2588-0373-2021-5-4-89-98.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushlyakov, V.I., Pavlenko, A.N., Zhukov, V.E. et al. Dynamics of Liquid Nitrogen in a Closed Vessel in the Presence of Helium Pressurization Gas. J. Engin. Thermophys. 31, 210–222 (2022). https://doi.org/10.1134/S1810232822020023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822020023

Navigation