Skip to main content
Log in

Radiation Consequences on Sutterby Fluid over a Curved Surface

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The current work analyzes the heat transfer analysis of Sutterby fluid flow over a curved surface, discussing the bubbling prospects of the magnetic field, and the temperature field equation is incorporated with the consequence of radiation. Eventually, we get the formulation of mathematical structure complimenting the physical problem. The governing equations for the non-Newtonian fluid (Sutterby fluid) model over a curved surface are derived via inclusion of the consequences of the curvature. The eminently nonlinear PDEs are reduced to nonlinear ODEs via the similarity transformation. Then the resulting ODEs are solved with the use of the OHAM technique. Graphical interpretation and illustration are proffered for the tangled physical parameters Eckert number \(Ec\), Sutterby fluid parameter \(\gamma\), Prandtl number Pr, and curvature parameter \(K\) in the temperature and velocity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Batra, R.L. and Eissa, M., Helical Flow of a Sutterby Model Fluid, Polymer-Plast. Technol. Engin., 1994, vol. 33, no. 4, pp. 489–501.

    Article  Google Scholar 

  2. Ahmad, S., Farooq, M., Javed, M., and Anjum, A., Double Stratification Effects in Chemically Reactive Squeezed Sutterby Fluid Flow with Thermal Radiation and Mixed Convection, Results Phys., 2018, vol. 8, pp. 1250–1259.

    Article  ADS  Google Scholar 

  3. Bilal, S., Sohail, M., Naz, R., and Malik, M.Y., Dynamical and Optimal Procedure to Analyze the Exhibition of Physical Attributes Imparted by Sutterby Magneto-Nanofluid in Darcy Medium Yielded by Axially Stretched Cylinder, Canadian J. Phys., 2020, vol. 98, no. 1, pp. 1–10.

    Article  ADS  Google Scholar 

  4. Hayat, T., Bibi, F., Khan, A.A., and Alsaedi, A., Entropy Production Minimization and Non-Darcy Resistance within Wavy Motion of Sutterby Liquid Subject to Variable Physical Characteristics, J. Thermal An. Calorim., 2021, vol. 143, no. 3, pp. 2215–2225.

    Article  Google Scholar 

  5. Ellahi, R., Sait, S.M., Shehzad, N., and Ayaz, Z., A Hybrid Investigation on Numerical and Analytical Solutions of Electro-Magnetohydrodynamics Flow of Nanofluid through Porous Media with Entropy Generation, Int. J. Numer. Methods Heat Fluid Flow, 2020, vol. 30, no. 2, pp. 834–854.

    Article  Google Scholar 

  6. Rahbari, A., Abbasi, M., Rahimipetroudi, I., Sundén, B., Ganji, D. D., and Gholami, M., Heat Transfer and MHD Flow of Non-Newtonian Maxwell Fluid through a Parallel Plate Channel: Analytical and Numerical Solution, Mech. Sci., 2018, vol. 9, no. 1, pp. 61–70.

    Article  ADS  Google Scholar 

  7. Besthapu, P., Haq, R.U., Bandari, S., and Al-Mdallal, Q.M., Thermal Radiation and Slip Effects on MHD Stagnation Point Flow of Non-Newtonian Nanofluid over a Convective Stretching Surface, Neural Comp. Appl., 2019, vol. 31, no. 1, pp. 207–217.

    Article  Google Scholar 

  8. Hojjat, M., Etemad, S.G., Bagheri, R., and Thibault, J., Convective Heat Transfer of Non-Newtonian Nanofluids through a Uniformly Heated Circular Tube, Int. J. Thermal Sci., 2011, vol. 50, no. 4, pp. 525–531.

    Article  Google Scholar 

  9. Sandeep, N., Kumar, B. R., and Kumar, M.J., A Comparative Study of Convective Heat and Mass Transfer in Non-Newtonian Nanofluid Flow past a Permeable Stretching Sheet, J. Molec. Liq., 2015, vol. 212, pp. 585–591.

    Article  Google Scholar 

  10. Sajadifar, S.A., Karimipour, A., and Toghraie, D., Fluid Flow and Heat Transfer of Non-Newtonian Nanofluid in a Microtube Considering Slip Velocity and Temperature Jump Boundary Conditions, Eur. J. Mech.-B/Fluids, 2017, vol. 61, pp. 25–32.

    Article  ADS  MathSciNet  Google Scholar 

  11. Maleki, H., Safaei, M.R., Alrashed, A.A., and Kasaeian, A., Flow and Heat Transfer in Non-Newtonian Nanofluids over Porous Surfaces, J. Thermal An. Calorim., 2019, vol. 135, no. 3, pp. 1655–1666.

    Article  Google Scholar 

  12. Hayat, T. and Qasim, M., Influence of Thermal Radiation and Joule Heating on MHD Flow of a Maxwell Fluid in the Presence of Thermophoresis, Int. J. Heat Mass Transfer, 2010, vol. 53, nos. 21/22, pp. 4780–4788.

    Article  Google Scholar 

  13. Pramanik, S., Casson Fluid Flow and Heat Transfer past an Exponentially Porous Stretching Surface in Presence of Thermal Radiation, Ain Shams Engin. J., 2014, vol. 5, no. 1, pp. 205–212.

    Article  Google Scholar 

  14. Hayat, T., Waqas, M., Shehzad, S.A., and Alsaedi, A., Mixed Convection Stagnation-Point Flow of Powell-Eyring Fluid with Newtonian Heating, Thermal Radiation, and Heat Generation/Absorption, J. Aerospace Engin., 2017, vol. 30, no. 1, p. 04016077.

    Article  Google Scholar 

  15. Ramandevi, B., Reddy, J.R., Sugunamma, V., and Sandeep, N., Combined Influence of Viscous Dissipation and Non-Uniform Heat Source/Sink on MHD Non-Newtonian Fluid Flow with Cattaneo-Christov Heat Flux, Alexandria Engin. J., 2018, vol. 57, no. 2, pp. 1009–1018.

    Article  Google Scholar 

  16. Sanni, K.M., Asghar, S., Jalil, M., and Okechi, N.F., Flow of Viscous Fluid along a Nonlinearly Stretching Curved Surface, Results Phys., 2017, vol. 7, pp. 1–4.

    Article  ADS  Google Scholar 

  17. Khan, W. A., Waqas, M., Ali, M., Sultan, F., Shahzad, M., and Irfan, M., Mathematical Analysis of Thermally Radiative Time-Dependent Sisko Nanofluid Flow for Curved Surface, Int. J. Numer. Methods Heat Fluid Flow, 2019, vol. 29, no. 9, pp. 3498–3514.

    Article  Google Scholar 

  18. Ahmad, S., Nadeem S., and Noor, M., Boundary Layer Flow over a Curved Surface Imbedded in Porous Medium, Comm. Theor. Phys., 2019, vol. 71, no. 3, p. 344.

    Article  ADS  Google Scholar 

  19. Khan, A.A., Batool, R., and Kousar, N., Examining the Behavior of MHD Micropolar Fluid over Curved Stretching Surface Based on the Modified Fourier Law, Sci. Iran. B, 2021, vol. 28, no. 1, pp. 223–230.

    Google Scholar 

  20. Abbas, Z., Naveed, M., and Sajid, M., Heat Transfer Analysis for Stretching Flow over a Curved Surface with Magnetic Field, J. Eng. Therm., 2013, vol. 22, no. 4, pp. 337–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. M. Metwally, A. A. Khan, K. Iskakova, M. R. Gorji or M. Ehab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Metwally, A.S., Khalid, A., Khan, A.A. et al. Radiation Consequences on Sutterby Fluid over a Curved Surface. J. Engin. Thermophys. 31, 315–327 (2022). https://doi.org/10.1134/S1810232822020126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822020126

Navigation