Skip to main content
Log in

Evaluation of Multistage Centrifugal Chiller Performance Metrics with Different Low Global Warming Potential Refrigerants

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

With a raising concern about climate change and global warming, various environmental regulations such as Kigali Amendment and EU Directive 517/2014 have already set the target to gradually phase out R134a and R123 refrigerants. In the current study, both the medium-pressure refrigerants (R134a and its alternatives R513A and R1234ze(E)) and low-pressure refrigerants (R123 and its alternatives R514A and R1233zd(E)) have been theoretically investigated for multistage chiller systems with a fixed cooling capacity. Compared with a single-stage chiller, a multistage chiller gives a \(\sim 4\)%–8% COP enhancement for medium-pressure refrigerants and \(\sim 4\)%–6% COP increase for low pressure refrigerants. Multistage systems can help to downsize the evaporator and provide more than 5% lifetime emission reductions. A two-stage chiller system is more preferable than the others for its high operating energy saving potential with limited additional component cost increase. In addition, R134a exhibits a better heat transfer performance than its candidates, while R123 exhibits a reverse behavior. R513A can exhibit a \(\sim 9\)% emission reduction as compared with R134a, and R1234ze(E) can provide a \(\sim 18\)% emission drop benefit as compared with R134a. R513A and R134a have a close compressor impeller diameter, and a similar trend can also be exhibited between R514A and R123. Accordingly, R513A is more preferred to replace R134a, and R514A to replace R123 for drop-in considerations due to their close compressor size, close COP, and reduced lifetime emissions. With approaching more strict refrigerant regulations and laws in the future, R1234ze(E) can be the ultimate option to replace R134a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. IPCC, 2013: Summary for Policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge, New York: Cambridge Univ. Press, 2013.

  2. Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch, B., Hone, T.D., Williams, E.D., Can, S., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., and Helseth, J., Technologies and Policies to Decarbonize Global Industry: Review and Assessment of Mitigation Drivers through 2070, Appl. Energy, 2020, vol. 266, p. 114848.

    Article  Google Scholar 

  3. Kang, J.N., Wei, Y.M., Liu, L.C., Han, R., Yu., B.Y., and Wang, J.W., Energy Systems for Climate Change Mitigation: A Systematic Review, Appl. Energy, 2020, vol. 263, p. 114602.

    Article  Google Scholar 

  4. Li, G., Comprehensive Investigation of Transport Refrigeration Life Cycle Climate Performance, Sustain. Energy Technol. Assess., 2017, vol. 21, pp. 33–49.

    Article  Google Scholar 

  5. Li, G., Investigations of Life Cycle Climate Performance and Material Life Cycle Assessment of Packaged Air Conditioners for Residential Application, Sust. Energy Technol. Assess., 2015, vol. 11, pp. 114–125.

    Article  Google Scholar 

  6. Cheng, Z., Wang, B., Shi, W., and Li, X., Performance Evaluation of Novel Double Internal Auto-Cascade Two-Stage Compression System Using Refrigerant Mixtures, Appl. Thermal Engin., 2020, vol. 168, p. 114898.

    Article  Google Scholar 

  7. Kornhauser, A.A., The Use of an as a Refrigerant Expander, Proceedings of USNC/IIR-Purdue Refrigeration Conference, USA, 1990.

  8. Yari, M., Exergetic Analysis of The Vapor Compression Refrigeration Cycle Using Ejector as an Expander, Int. J. Exergy, 2008, vol. 5, pp. 326–340.

    Article  Google Scholar 

  9. Ma, G., Chai, Q., and Jiang, Y., Experimental Investigation of Air-Source Heat Pump for Cold Regions, Int. J. Refrig., 2003, vol. 26, pp. 12–18.

    Article  Google Scholar 

  10. Heo, J., Jeong, M.W., and Kim, Y., Effects of Flash Tank Vapor Injection on the Heating Performance of an Inverter-Driven Heat Pump for Cold Regions. Int. J. Refrig., 2010, vol. 33, pp. 848–855.

    Article  Google Scholar 

  11. Wei, W., Ni, L., Zhou, C., Yao, Y., Xu, L., Yang, Y., Performance Analysis of a Quasi-Two Stage Compression Air Source Heat Pump in Severe Cold Region with a New Control Strategy, Appl. Therm. Eng., 2020, vol. 174, p. 115317.

    Article  Google Scholar 

  12. Deymi-Dashtebayaz, M., Maddah, S., and Fallahi, E., Thermo-Economic-Environmental Optimization of Injection Mass Flow Rate in the Two-Stage Compression Refrigeration Cycle (Case Study: Mobarakeh Steel Company in Isfahan, Iran), Int. J. Refrig., 2019, vol. 106, pp. 7–17.

    Article  Google Scholar 

  13. Yang, J.L., Ma, Y.T., and Liu, S.C., Performance Investigation of Transcritical Carbon Dioxide Two-Stage Compression Cycle with Expander, Energy, 2007, vol. 32, no. 3, pp. 237–245.

    Article  Google Scholar 

  14. Wang, X.D., Hwang, Y., and Radermacher, R., Two-Stage Heat Pump System with Vapor-Injected Scroll Compressor Using R410A as a Refrigerant, Int. J. Refrig., 2009, vol. 32, pp. 1442–1451.

    Article  Google Scholar 

  15. Cavallini, A., Cecchinato, L., Corradi, M., Fornasieri, E., and Zilio, C., Two-Stage Transcritical Carbon Dioxide Cycle Optimisation: A Theoretical and Experimental Analysis, Int. J. Refrig., 2005, vol. 28, pp. 1274–1283.

    Article  Google Scholar 

  16. Ko, Y., Park, S., Jin, S., Kim, B., and Jeong, J.H., The Selection of Volume Ratio of Two-Stage Rotary Compressor and Its Effects on Air-to-Water Heat Pump with Flash Tank Cycle, Appl. Energy, 2013, vol. 104, pp. 187–196.

    Article  Google Scholar 

  17. Jin, X., Zhang, K., Liu, Z.Y., Li, X.Y., and Jiang, S., Numerical Research on Coupling Performance of Inter-Stage Parameters for Two-Stage Compression System with Injection, Appl. Therm. Eng., 2018, vol. 128, p. 1430–1445.

    Article  Google Scholar 

  18. Lee, S.H., Jeon, Y., Kim, B., Yun, S., and Kim, Y., Simulation-Based Comparative Seasonal Performance Evaluation of Single-Stage Heat Pump and Modulated Two-Stage Injection Heat Pump Using Rotary Compressors with Various Cylinder Volume Ratios, Appl. Therm. Eng., 2019, vol. 59, p. 113892.

    Article  Google Scholar 

  19. Wang, J., Qv, D., Ni, L., and Yao, Y., Experimental Study on an Injection-Assisted Air Source Heat Pump with a Novel Two-Stage Variable-Speed Scroll Compressor, Appl. Therm. Eng., 2020, vol. 176, p. 115415.

    Article  Google Scholar 

  20. Kang, D., Jeong, J.H., and Ryu, B., Heating Performance of a VRF Heat Pump System Incorporating Double Vapor Injection in Scroll Compressor, Int. J. Refrig., 2018, vol. 96, pp. 50–62.

    Article  Google Scholar 

  21. Cao, X.Q., Yang, W.W., Zhou, F., and He, Y.L., Performance Analysis of Different High-Temperature Heat Pump Systems for Low-Grade Waste Heat Recovery, Appl. Therm. Eng., 2014, vol. 71, pp. 291–300.

    Article  Google Scholar 

  22. UNEP Ozone Secretariat 2000. The Montreal Protocol on Substances that Deplete the Ozone Layer as Either Adjusted and/or Amended in London 1990, Copenhagen 1992, Vienna 1995, Montreal 1997, Beijing 1999.

  23. UN. The Kigali Amendment to the Montreal Protocol: Another Global Commitment to Stop Climate Change; https://www.unenvironment.org/news-and-stories/news/kigali-amendment-montreal-protocol-another-global-commitment-stop-climate (accessed on March 2020).

  24. AGENCY, E.P. Summary Guide to the HFC Phase Down, 2015; Available online: https://www.epa.ie (accessed on March 2020).

  25. EU Directive 517/2014; Available online: https://www.eea.europa.eu/policy-documents/regulation-eu-no-517-2014 (accessed on March 2020).

  26. Andrew Pon Abraham, J.D. and Mohanraj, M., Thermodynamic Performance of Automobile Air Conditioners Working with R430A as a Drop-In Substitute to R134a, J. Therm. An. Calorim., 2019, vol. 136, pp. 2071–2086.

    Article  Google Scholar 

  27. Johnson, P. and Kasai, K., System Drop-In Test of R134a Alternative Fluids R-1234ze(E) and D4Y in a 200 RT Air-Cooled Screw Chiller, AHRI low-GWP AREP Report 25, August 2013.

  28. Mota-Babiloni, A., Navarro-Esbrı́, J., Barragan, A., Moles, F., and Peris, B., Drop-In Energy Performance Evaluation of R1234yf and R1234ze (E) in a Vapor Compression System as R134a Replacements, Appl. Therm. Eng., 2014, vol. 71, pp. 259–265.

    Article  Google Scholar 

  29. Kondou, C., Nagata, R., Nii, N., Koyama, S., and Higashi, Y., Surface Tension of Low GWP Refrigerants R1243zf, R1234ze(Z), and R1233zd(E), Int. J. Refrig., 2015, vol. 53, pp. 80–89.

    Article  Google Scholar 

  30. Romeo, R., Giuliano Albo, P.A., Lago, S., and Brown, J.S., Experimental Liquid Densities of cis-1,3,3,3-tetrafluoroprop-1-ene (R1234ze(Z)) and trans-1-chloro-3,3,3-trifluoropropene (R1233zd(E)), In. J. Refrig., 2017, vol. 79, pp. 176–182.

    Article  Google Scholar 

  31. Fedele, L., Bobbo, S., Scattolini, M., Zilio, C., and Akasaka, R., HCFO Refrigerant cis-1-chloro-2,3,3,3 tetrafluoropropene [R1224yd(Z)]: Experimental Assessment and Correlation of the Liquid Density, Int. J. Refrig., 2020, vol. 118, pp. 139–145.

    Article  Google Scholar 

  32. Majurin, J., Sorenson, E., Steinke, D., and Herried, M., Chemical Stability Assessments of R-514A and R-1233zd(E), ASHRAE Winter Conf., Las Vegas, 2016.

  33. Majurin, J., Staats, S., Sorenson, E., and Steinke, D., Material and Lubricant Compatibility Assessments of R-1233zd(E) and R-514A, ASHRAE Winter Conf., Las Vegas, 2016.

  34. Lemmon, E., Huber, M., and Mclinden, M., NIST Reference Fluid Thermodynamic and Transport Properties REFPROP, version 10.0, The National Institute of Standards and Technology (NIST), 2020.

  35. Engineering Equation Solver (2020) F-Chart Software, Academic Processional Version, V10.990.

  36. Kern, D.Q., Process Heat Transfer, Tata McGraw-Hill Education, 1950.

    Google Scholar 

  37. Çengel, Y.A., Heat and Mass Transfer, 2nd ed., McGraw-Hill, 2002.

    Google Scholar 

  38. Green, D. and Perry, R., Perry’s Chemical Engineers’ Handbook, vol. 8, New York: McGraw-Hill, 2007.

    Google Scholar 

  39. McAdams, W.H., Heat Transmission, New York: McGraw-Hill, 1958, pp. 276–280.

    Google Scholar 

  40. Tinker, T., Shell Side Characteristics of Shell and Tube Heat Exchangers. General Discuss Heat Transfer, 1951, pp. 89–116.

  41. Hewitt, G.F., Hemisphere Handbook of Heat Exchanger Design, New York: Hemisphere, 1990.

    Google Scholar 

  42. Boyko, L.D. and Kruzhilin, G.N., Heat Transfer and Hydraulic Resistance during Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes, Int. J. Heat Mass Transfer, 1967, vol. 10, pp. 361–373.

    Article  Google Scholar 

  43. GB/T18430.1-2007: Water Chilling (Heat Pump) Packages Using the Vapor Compression Cycle-Part 1: Water Chilling (Heat Pump) Packages For Industrial & Commercial And Similar Application.

  44. Balje, E.O., Turbomachines, A Guide to Design, Selection and Theory, New York: Wiley, 1981.

    Book  Google Scholar 

  45. Turton, R., Bailie, R.C., Whiting, W.B., and Shaeiwitz, J.A., Analysis, Synthesis and Design of Chemical Processes, Pearson Education, 2008.

  46. Chemical Engineering Plant Cost Index, 2020; http://www.chemengonline.com/pci-home

  47. Schultz, K. and Kujak, S., System Drop-In Tests of R134a Alternative Refrigerants (ARM-42a, N-13a, N-13b, R-1234ze(E), and OpteonTM XP10) in a 230-RT Water-Cooled Water Chiller. Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Low-GWP Alternative Refrigerants Evaluation Program (Low-GWP AREP), Report, 2013.

  48. Zhang, M., Peng, F., and Shi, Z., Analysis and Calculation of Annual Electricity Consumption with Electric Chillersf Central Air-Conditioning, Refrig. Air-Cond., 2010, vol. 10, no. 6, pp. 11–13 (in Chinese).

  49. Brander, M., Sood, A., Wylie, C., Haughton, A., and Lovell, J., Electricity-Specific Emission Factors for Grid Electricity, Ecometrica, 2011; https://ecometrica.com/white-papers/electricity-specific-emission- factors-for-grid-electricity.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G. Evaluation of Multistage Centrifugal Chiller Performance Metrics with Different Low Global Warming Potential Refrigerants. J. Engin. Thermophys. 31, 340–374 (2022). https://doi.org/10.1134/S181023282202014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282202014X

Navigation