Skip to main content

Advertisement

Log in

Some results on the electroacoustic energy flux for micropolar bodies

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Our study is a generalization of some results obtained by Synge in the classical theory of elasticity. By this extension, we wish to cover the theory of micropolar elastic bodies. More precisely, we approach the electroacoustic energy flux in the case of plane waves of harmonic type which propagate in piezoelectric crystals which are supposed to be prepolarized and prestressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baesu, E., Fortune, D., Soos, E.: Incremental behaviour of hypereleastic dielectrics and piezoelectric crystals. Z. Angew. Math. Phys. 54, 160–168 (2003)

    Article  MathSciNet  Google Scholar 

  2. Balakirov, M.K., Ghilinskii, M.K.: Waves in Piezoelectric Crystals. Nauka, Novosibirsk (1982).. ((in Russian))

    Google Scholar 

  3. Synge, J.L.: Flux and energy for elastic waves in anisotropic media. Proc. Roy. Irish Acad. 58, 13–21 (1956)

    MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)

    Article  Google Scholar 

  5. Eringen, A.C.: Microcontinuum Field Theories. Springer-Verlag, New York (1999)

    Book  Google Scholar 

  6. Iesan, D., Quintanilla, R.: Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 43, 885–907 (2005)

    Article  Google Scholar 

  7. Ciarletta, M.: On the bending of microstretch elastic plates. Int. J. Eng. Sci. 37, 1309–1318 (1995)

    Article  MathSciNet  Google Scholar 

  8. Vlase, S., et al.: Advanced Polylite composite laminate material behavior to tensile stress on weft direction. J. Optoelectron. Adv. Mater. 14(7–8), 658–663 (2012)

    Google Scholar 

  9. Teodorescu-Draghicescu, H., et al.: Optoelectron. Adv. Mater. Rapid Commun. 5(3–4), 273–277 (2011)

    Google Scholar 

  10. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(6), 1365–1374 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Marin, M., Marinescu, C.: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73–86 (1998)

    Article  MathSciNet  Google Scholar 

  12. Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. An. St. Univ. Ovidius Constanta 22(1), 169–188 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Marin, M., et al.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)

    Article  Google Scholar 

  14. Hobiny, A., et al.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020)

    Article  Google Scholar 

  15. Bhatti, M.M., et al.: Recent trends in computational fluid dynamics. Front. Phys. 8, 593111 (2020). https://doi.org/10.3389/fphy.2020.593111

    Article  Google Scholar 

  16. Abouelregal, A.E., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8(7), 1128 (2020)

    Article  Google Scholar 

  17. Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)

    Book  Google Scholar 

  18. Bhatti, M.M., Beg, O.A., Abdelsalam, S.I.: Computational framework of magnetized MgO-Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings. Nanomaterials (Basel) 12(7), 1049 (2022)

    Article  Google Scholar 

  19. Bello González, N., et al.: On the energy flux in acoustic waves in the solar atmosphere. Memorie della Societa Astronomica Italiana 81, 757–752 (2010)

    ADS  Google Scholar 

  20. Iniesta, C., et al.: New method to analyse and optimise thermoacoustic power generators for the recovery of residual energy. Alex. Eng. J. 59(5), 3907–3917 (2020)

    Article  Google Scholar 

  21. Backhaus, S., Swift, G.W.: A thermoacoustic-Stirling heat engine: detailed study. J. Acoust. Soc. Am. 107, 3148–3166 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Marin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, M., Vlase, S., Öchsner, A. et al. Some results on the electroacoustic energy flux for micropolar bodies. Continuum Mech. Thermodyn. 34, 1197–1204 (2022). https://doi.org/10.1007/s00161-022-01114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01114-7

Keywords

Navigation