Skip to main content
Log in

Attentional focus effect on dual-task walking in Parkinson’s disease with and without freezing of gait

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

In Parkinson’s disease, the optimal attentional focus strategy for dual-task walking may vary with freezing of gait (FOG), due to different severities of impaired automaticity. The study aimed to investigate (i) the immediate effect of attentional focus on dual-task walking in participants with and without FOG, and (ii) the training effect of attentional focus on walking, FOG, and falls. In experiment 1, FOG and non-FOG groups (16 participants each) performed a dual-task of holding two interlocking rings apart while walking, either without attention instruction or with instructions to focus attention internally or externally. Gait parameters and ring-touching times were measured. In experiment 2, 30 participants with FOG were randomized to 6 weeks of dual-task training with internal-focus or external-focus instruction. Before and after training, we recorded timed up-and-go (TUG) and TUG dual-task (TUGdt) in on-medication and off-medication states, and the numbers of FOG episodes and falls. The non-FOG group showed less step length variability and shorter ring-touching times with external-focus. The FOG group showed less step length variability, less cadence, increased gait velocity, and longer step lengths with internal-focus compared to external-focus and no-focus instructions. Both internal-focus and external-focus training reduced FOG and falls after intervention, but only internal-focus training reduced TUG and TUGdt in both on-medication and off-medication states. Our findings suggest external-focus would enhance walking automaticity and the concurrent task accuracy for non-freezers, whereas for freezers, internal-focus could increase gait stability and lead to a more positive effect on improving locomotion control and reducing falling risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets generated and analyzed in this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Kelly VE, Eusterbrock AJ, Shumway-Cook A. A review of dual-task walking deficits in people with Parkinson’s disease: motor and cognitive contributions, mechanisms, and clinical implications. Parkinsons Dis. 2012;2012: 918719. https://doi.org/10.1155/2012/918719.

    Article  Google Scholar 

  2. Rochester L, Galna B, Lord S, Burn D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience. 2014;265:83–94. https://doi.org/10.1016/j.neuroscience.2014.01.041.

    Article  CAS  Google Scholar 

  3. Hausdorff JM. Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum Mov Sci. 2007;26(4):555–89. https://doi.org/10.1016/j.humov.2007.05.003.

    Article  Google Scholar 

  4. Raffegeau TE, Krehbiel LM, Kang N, Thijs FJ, Altmann LJP, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat Disord. 2019;62:28–35. https://doi.org/10.1016/j.parkreldis.2018.12.012.

    Article  Google Scholar 

  5. Bloem BR, Valkenburg VV, Slabbekoorn M, Willemsen MD. The Multiple Tasks Test: development and normal strategies. Gait Posture. 2001;14(3):191–202. https://doi.org/10.1016/s0966-6362(01)00141-2.

    Article  CAS  Google Scholar 

  6. Heinzel S, Maechtel M, Hasmann SE, Hobert MA, Heger T, Berg D, et al. Motor dual-tasking deficits predict falls in Parkinson’s disease: a prospective study. Parkinsonism Relat Disord. 2016;26:73–7. https://doi.org/10.1016/j.parkreldis.2016.03.007.

    Article  Google Scholar 

  7. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson’s disease: a complex and evolving picture. Mov Disord. 2017;32(11):1524–36. https://doi.org/10.1002/mds.27195.

    Article  Google Scholar 

  8. Vandenbossche J, Deroost N, Soetens E, Coomans D, Spildooren J, Vercruysse S, et al. Freezing of gait in Parkinson’s disease: disturbances in automaticity and control. Front Hum Neurosci. 2013;6:356. https://doi.org/10.3389/fnhum.2012.00356.

    Article  Google Scholar 

  9. Peterson DS, King LA, Cohen RG, Horak FB. Cognitive contributions to freezing of gait in Parkinson disease: implications for physical rehabilitation. Phys Ther. 2016;96(5):659–70. https://doi.org/10.2522/ptj.20140603.

    Article  Google Scholar 

  10. Plotnik M, Hausdorff JM. The role of gait rhythmicity and bilateral coordination of stepping in the pathophysiology of freezing of gait in Parkinson’s disease. Mov Disord. 2008;Suppl 2:S444-50. https://doi.org/10.1002/mds.21984.

    Article  Google Scholar 

  11. de Souza Fortaleza AC, Mancini M, Carlson-Kuhta P, King LA, Nutt JG, Chagas EF, et al. Dual task interference on postural sway, postural transitions and gait in people with Parkinson’s disease and freezing of gait. Gait Posture. 2017;56:76–81. https://doi.org/10.1016/j.gaitpost.2017.05.006.

    Article  Google Scholar 

  12. Maidan I, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Altered organization of the dorsal attention network is associated with freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2019;63:77–82. https://doi.org/10.1016/j.parkreldis.2019.02.036.

    Article  Google Scholar 

  13. Hardeman LES, Kal EC, Young WR, van der Kamp J, Ellmers TJ. Visuomotor control of walking in Parkinson’s disease: exploring possible links between conscious movement processing and freezing of gait. Behav Brain Res. 2020;395: 112837. https://doi.org/10.1016/j.bbr.2020.112837.

    Article  CAS  Google Scholar 

  14. Zirek E, Ersoz Huseyinsinoglu B, Tufekcioglu Z, Bilgic B, Hanagasi H. Which cognitive dual-task walking causes most interference on the Timed Up and Go test in Parkinson’s disease: a controlled study. Neurol Sci. 2018;39(12):2151–7. https://doi.org/10.1007/s10072-018-3564-2.

    Article  CAS  Google Scholar 

  15. Onder H, Ozyurek O. The impact of distinct cognitive dual-tasks on gait in Parkinson’s disease and the associations with the clinical features of Parkinson’s disease. Neurol Sci Neurol Sci. 2021;42(7):2775–83. https://doi.org/10.1007/s10072-020-04874-9.

    Article  Google Scholar 

  16. Bloem BR, Grimbergen YA, van Dijk JG, Munneke M. The, “posture second” strategy: a review of wrong priorities in Parkinson’s disease. J Neurol Sci. 2006;248(1–2):196–204. https://doi.org/10.1016/j.jns.2006.05.010.

    Article  Google Scholar 

  17. Canning CG. The effect of directing attention during walking under dual-task conditions in Parkinson’s disease. Parkinsonism Relat Disord. 2005;11(2):95–9. https://doi.org/10.1016/j.parkreldis.2004.09.006.

    Article  Google Scholar 

  18. Wulf G. Attentional focus and motor learning: a review of 15 years. Int Rev Sport Exerc Psychol. 2013;6(1):77–104. https://doi.org/10.1080/1750984X.2012.723728.

    Article  Google Scholar 

  19. Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):1143–54. https://doi.org/10.1080/713756012.

    Article  CAS  Google Scholar 

  20. Johnson L, Burridge JH, Demain SH. Internal and external focus of attention during gait re-education: an observational study of physical therapist practice in stroke rehabilitation. Phys Ther. 2013;93(7):957–66. https://doi.org/10.2522/ptj.20120300.

    Article  Google Scholar 

  21. McNevin NH, Shea CH, Wulf G. Increasing the distance of an external focus of attention enhances learning. Psychol Res. 2003;67(1):22–9. https://doi.org/10.1007/s00426-002-0093-6.

    Article  Google Scholar 

  22. Landers M, Wulf G, Wallmann H, Guadagnoli M. An external focus of attention attenuates balance impairment in patients with Parkinson’s disease who have a fall history. Physiotherapy. 2005;91(3):152–8. https://doi.org/10.1016/j.physio.2004.11.010.

    Article  Google Scholar 

  23. Wulf G, Landers M, Lewthwaite R, Töllner T. External focus instructions reduce postural instability in individuals with Parkinson disease. Phys Ther. 2009;89(2):162–8. https://doi.org/10.2522/ptj.20080045.

    Article  Google Scholar 

  24. Jazaeri SZ, Azad A, Mehdizadeh H, Habibi SA, Mandehgary Najafabadi M, Saberi ZS, et al. The effects of anxiety and external attentional focus on postural control in patients with Parkinson’s disease. PLoS One. 2018;13(2): e0192168. https://doi.org/10.1371/journal.pone.0192168.

    Article  CAS  Google Scholar 

  25. Huang CY, Zhao CG, Hwang IS. Neural basis of postural focus effect on concurrent postural and motor tasks: phase-locked electroencephalogram responses. Behav Brain Res. 2014;274:95–107. https://doi.org/10.1016/j.bbr.2014.07.054.

    Article  Google Scholar 

  26. Sakurada T, Goto A, Tetsuka M, Nakajima T, Morita M, Yamamoto SI, et al. Prefrontal activity predicts individual differences in optimal attentional strategy for preventing motor performance decline: a functional near-infrared spectroscopy study. Neurophotonics. 2019;6(2): 025012. https://doi.org/10.1117/1.NPh.6.2.025012.

    Article  Google Scholar 

  27. de Melker Worms JLA, Stins JF, van Wegen EEH, Verschueren SMP, Beek PJ, Loram ID. Effects of attentional focus on walking stability in elderly. Gait Posture. 2017;55:94–9. https://doi.org/10.1016/j.gaitpost.2017.03.031.

    Article  Google Scholar 

  28. Mak TCT, Young WR, Chan DCL, Wong TWL. Gait stability in older adults during level-ground walking: the attentional focus approach. J Gerontol B Psychol Sci Soc Sci. 2020;75(2):274–81. https://doi.org/10.1093/geronb/gby115.

    Article  Google Scholar 

  29. Mak TCT, Young WR, Lam WK, Tse ACY, Wong TWL. The role of attentional focus on walking efficiency among older fallers and non-fallers. Age Ageing. 2019;48(6):811–6. https://doi.org/10.1093/ageing/afz113.

    Article  Google Scholar 

  30. Beck EN, Intzandt BN, Almeida QJ. Can dual task walking improve in Parkinson’s disease after external focus of attention exercise? A single blind randomized controlled trial. Neurorehabil Neural Repair. 2018;32(1):18–33. https://doi.org/10.1177/1545968317746782.

    Article  Google Scholar 

  31. Lehman DA, Toole T, Lofald D, Hirsch MA. Training with verbal instructional cues results in near-term improvement of gait in people with Parkinson disease. J Neurol Phys Ther. 2005;29(1):2–8. https://doi.org/10.1097/01.npt.0000282256.36208.cf.

    Article  Google Scholar 

  32. Ginis P, Pirani R, Basaia S, Ferrari A, Chiari L, Heremans E, et al. Focusing on heel strike improves toe clearance in people with Parkinson’s disease: an observational pilot study. Physiotherapy. 2017;103(4):485–90. https://doi.org/10.1016/j.physio.2017.05.001.

    Article  Google Scholar 

  33. Geroin C, Nonnekes J, de Vries NM, Strouwen C, Smania N, Tinazzi M, et al. Does dual-task training improve spatiotemporal gait parameters in Parkinson’s disease? Parkinsonism Relat Disord. 2018;55:86–91. https://doi.org/10.1016/j.parkreldis.2018.05.018.

    Article  Google Scholar 

  34. Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil. 2005;2:19. https://doi.org/10.1186/1743-0003-2-19.

    Article  Google Scholar 

  35. Gilat M, Bell PT, Ehgoetz Martens KA, Georgiades MJ, Hall JM, Walton CC, et al. Dopamine depletion impairs gait automaticity by altering cortico-striatal and cerebellar processing in Parkinson’s disease. Neuroimage. 2017;152:207–20. https://doi.org/10.1016/j.neuroimage.2017.02.073.

    Article  CAS  Google Scholar 

  36. Baker K, Rochester L, Nieuwboer A. The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Arch Phys Med Rehabil. 2007;88(12):1593–600. https://doi.org/10.1016/j.apmr.2007.07.026.

    Article  Google Scholar 

  37. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181–4. https://doi.org/10.1136/jnnp.55.3.181.

    Article  CAS  Google Scholar 

  38. Nieuwboer A, Rochester L, Herman T, Vandenberghe W, Emil GE, Thomaes T, et al. Reliability of the new freezing of gait questionnaire: agreement between patients with Parkinson’s disease and their carers. Gait Posture. 2009;30(4):459–63. https://doi.org/10.1016/j.gaitpost.2009.07.108.

    Article  Google Scholar 

  39. Strouwen C, Molenaar EA, Keus SH, Münks L, Bloem BR, Nieuwboer A. Test-retest reliability of dual-task outcome measures in people with Parkinson disease. Phys Ther. 2016;96(8):1276–86. https://doi.org/10.2522/ptj.20150244.

    Article  Google Scholar 

  40. Strouwen C, Molenaar EALM, Münks L, Broeder S, Ginis P, Bloem BR, et al. Determinants of dual-task training effect size in Parkinson disease: who will benefit most? J Neurol Phys Ther. 2019;43(1):3–11. https://doi.org/10.1097/NPT.0000000000000247.

    Article  Google Scholar 

  41. Laessoe U, Hoeck HC, Simonsen O, Voigt M. Residual attentional capacity amongst young and elderly during dual and triple task walking. Hum Mov Sci. 2008;27:496–512. https://doi.org/10.1016/j.humov.2007.12.001.

    Article  Google Scholar 

  42. Beurskens R, Steinberg F, Antoniewicz F, Wolff W, Granacher U. Neural correlates of dual-task walking: effects of cognitive versus motor interference in young adults. Neural Plast. 2016;2016:8032180. https://doi.org/10.1155/2016/8032180.

    Article  CAS  Google Scholar 

  43. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, et al. Core assessment program for intracerebral transplantations (CAPIT). Mov Disord. 1992;7:2–13. https://doi.org/10.1002/mds.870070103.

    Article  CAS  Google Scholar 

  44. Schaafsma JD, Balash Y, Gurevich T, Bartels AL, Hausdorff JM, Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur J Neurol. 2003;10(4):391–8. https://doi.org/10.1046/j.1468-1331.2003.00611.x.

    Article  CAS  Google Scholar 

  45. Meyers LS, Gamst G, Guarino AJ. Data screening. In: Applied multivariate research: design and interpretation. Sage Publications, Inc; 2006:59−61.

  46. Strouwen C, Molenaar EA, Keus SH, Münks L, Munneke M, Vandenberghe W, et al. Protocol for a randomized comparison of integrated versus consecutive dual task practice in Parkinson’s disease: the DUALITY trial. BMC Neurol. 2014;14:61. https://doi.org/10.1186/1471-2377-14-61.

    Article  Google Scholar 

  47. Kim Y, Lai B, Mehta T, Thirumalai M, Padalabalanarayanan S, Rimmer JH, Motl RW. Exercise training guidelines for multiple sclerosis, stroke, and Parkinson disease: rapid review and synthesis. Am J Phys Med Rehabil. 2019;98(7):613–21. https://doi.org/10.1097/PHM.0000000000001174.

    Article  Google Scholar 

  48. Portney LG, Watkins MP. Foundations of clinical research: Pearson New International Edition: Applications to practice. 3rd ed. London: Pearson; 2013. p. 589.

    Google Scholar 

  49. Hwang IS, Huang CY. Neural correlates of task cost for stance control with an additional motor task: phase-locked electroencephalogram responses. PLoS One. 2016;11(3): e0151906. https://doi.org/10.1371/journal.pone.0151906.

    Article  CAS  Google Scholar 

  50. Yu SH, Hwang IS, Huang CY. Neuronal responses to a postural dual-task with differential attentional prioritizations: compensatory resource allocation with healthy aging. J Gerontol B Psychol Sci Soc Sci. 2019;74(8):1326–34. https://doi.org/10.1093/geronb/gby073.

    Article  Google Scholar 

  51. Fling BW, Cohen RG, Mancini M, Nutt JG, Fair DA, Horak FB. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain. 2013;136(Pt 8):2405–18. https://doi.org/10.1093/brain/awt172.

    Article  Google Scholar 

  52. Wu T, Chan P, Hallett M. Effective connectivity of neural networks in automatic movements in Parkinson’s disease. Neuroimage. 2010;49:2581–7. https://doi.org/10.1016/j.neuroimage.2009.10.051.

    Article  CAS  Google Scholar 

  53. Dubost V, Kressig RW, Gonthier R, Herrmann FR, Aminian K, Najafi B, et al. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults. 2006;25(3):372–82. https://doi.org/10.1016/j.humov.2006.03.004.

  54. Behrman AL, Teitelbaum P, Cauraugh JH. Verbal instructional sets to normalise the temporal and spatial gait variables in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;65(4):580–2. https://doi.org/10.1136/jnnp.65.4.580.

    Article  CAS  Google Scholar 

  55. Nieuwboer A, Dom R, De Weerdt W, Desloovere K, Fieuws S, Broens-Kaucsik E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Mov Disord. 2001;16(6):1066–75. https://doi.org/10.1002/mds.1206.

    Article  CAS  Google Scholar 

  56. Iansek R, Huxham F, McGinley J. The sequence effect and gait festination in Parkinson disease: contributors to freezing of gait? Mov Disord. 2006;21(9):1419–24. https://doi.org/10.1002/mds.20998.

    Article  Google Scholar 

  57. Huang SL, Hsieh CL, Wu RM, Tai CH, Lin CH, Lu WS. Minimal detectable change of the timed “up & go” test and the dynamic gait index in people with Parkinson disease. Phys Ther. 2011;91(1):114–21. https://doi.org/10.2522/ptj.20090126.

    Article  Google Scholar 

  58. Vance RC, Healy DG, Galvin R, French HP. Dual tasking with the timed “up & go” test improves detection of risk of falls in people with Parkinson disease. Phys Ther. 2015;95(1):95–102. https://doi.org/10.2522/ptj.20130386.

    Article  Google Scholar 

  59. Heremans E, Nieuwboer A, Vercruysse S. Freezing of gait in Parkinson’s disease: where are we now? Curr Neurol Neurosci Rep. 2013;13(6):350. https://doi.org/10.1007/s11910-013-0350-7.

    Article  Google Scholar 

  60. Beck EN, Almeida QJ. Dopa-responsive balance changes depend on use of internal versus external attentional focus in Parkinson disease. Phys Ther. 2017;97(2):208–16. https://doi.org/10.2522/ptj.20160217.

    Article  Google Scholar 

  61. Profeta VLS, Turvey MT. Bernstein’s levels of movement construction: a contemporary perspective. Hum Mov Sci. 2018;57:111–33. https://doi.org/10.1016/j.humov.2017.11.013.

    Article  Google Scholar 

  62. Horváth K, Aschermann Z, Ács P, Deli G, Janszky J, Komoly S, et al. Minimal clinically important difference on the Motor Examination part of MDS-UPDRS. Parkinsonism Relat Disord. 2015;21(12):1421–6. https://doi.org/10.1016/j.parkreldis.2015.10.006.

    Article  Google Scholar 

  63. Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Ford MP, et al. Accuracy of fall prediction in Parkinson disease: six-month and 12-month prospective analyses. Parkinsons Dis. 2012;2012: 237673. https://doi.org/10.1155/2012/237673.

    Article  Google Scholar 

  64. Yu RL, Tan CH, Lu YC, Wu RM. Aldehyde dehydrogenase 2 is associated with cognitive functions in patients with Parkinson’s disease. Sci Rep. 2016;6:30424. https://doi.org/10.1038/srep30424.

    Article  CAS  Google Scholar 

  65. Kressig RW, Beauchet O, European GAITRite Network Group. Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res. 2006;18:174–6. https://doi.org/10.1007/BF03327437.

    Article  Google Scholar 

  66. Ehgoetz Martens KA, Shine JM, Walton CC, Georgiades MJ, Gilat M, Hall JM, et al. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov Disord. 2018;33(7):1174–8. https://doi.org/10.1002/mds.27417.

    Article  Google Scholar 

  67. Kwok JYY, Smith R, Chan LML, Lam LCC, Fong DYT, Choi EPH, Lok KYW, Lee JJ, Auyeung M, Bloem BR. Managing freezing of gait in Parkinson’s disease: a systematic review and network meta-analysis. J Neurol. 2022. https://doi.org/10.1007/s00415-022-11031-z.[Online ahead of print]

  68. Yang YR, Cheng SJ, Lee YJ, Liu YC, Wang RY. Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson’s disease: a randomized controlled pilot study. PLoS One. 2019;14(6): e0218180. https://doi.org/10.1371/journal.pone.0218180.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Ministry of Science and Technology, R.O.C. Taiwan (grant no. MOST 109–2314-B-002–115-MY3).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R.M.W., C.H.L., and C.Y.H. Methodology: Y.A.C. and C.Y.H. Formal analysis: Y.A.C., C.H.S., and C.Y.H. Writing − original draft preparation: Y.A.C. and C.Y.H. Writing − review and editing: Y.A.C, R.M.W., and C.Y.H. Funding acquisition: C.Y.H.

Corresponding author

Correspondence to Cheng-Ya Huang.

Ethics declarations

Ethics approval

All procedures performed in this study were in accordance with the ethical standards of the Helsinki declaration and approved by the National Taiwan University Hospital Research Ethics Committee.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YA., Wu, RM., Sheu, CH. et al. Attentional focus effect on dual-task walking in Parkinson’s disease with and without freezing of gait. GeroScience 45, 177–195 (2023). https://doi.org/10.1007/s11357-022-00606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-022-00606-3

Keywords

Navigation