Skip to main content

Advertisement

Log in

An Electric Circuit Analogy Model for Analyzing the Relation Between CO and H2 in Interfacial Reduction Reactions

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Clean energies are promising alternatives to fossil fuels in the steel industry to reduce carbon dioxide (CO2) emissions and consequently suppress global warming. The first step for achieving the goal is to partially replace carbon monoxide (CO) by hydrogen (H2) in the iron oxide reduction reactions. Therefore, the competitive interaction between the CO and H2 in gas–solid reactions should be first unraveled. The gaseous reduction experiments in this work employ CO, H2, and their mixture to reduce the wustite (FeO) when the interfacial chemical reaction is the rate-controlling step. We establish an electric circuit analogy model to clarify the gaseous components’ interaction based on experimental kinetics analysis, and a linear relation is highlighted and further validated to model gaseous reduction reaction rates under present experimental conditions. The results are expected to provide quantitative insight into the competitive interaction between gaseous components in the reduction process controlled by the interfacial reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.W. Zhang, L. Pan, L. Wang, and J.J. Zou: Chem. Eng. Sci., 2018, vol. 180, pp. 95–125.

    Article  CAS  Google Scholar 

  2. C. Liao, J.T. Erbaugh, A.C. Kelly, and A. Agrawal: Renew. Sustain. Energy Rev., 2021, vol. 145, 111063.

    Article  Google Scholar 

  3. J. Wadsworth: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 259–74.

    Article  CAS  Google Scholar 

  4. Y. Liu, Z. Hu, and Y. Shen: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2971–91.

    Article  Google Scholar 

  5. C.L. Chang, Q.C. Lin, Z.W. Liao, J.D. Wang, and Y.R. Yang: Chem. Eng. Sci., 2022, vol. 247, 117021.

    Article  CAS  Google Scholar 

  6. T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori: Int. J. Hydrog. Energy, 2021, vol. 46, pp. 31963–83.

    Article  CAS  Google Scholar 

  7. K.H. Ma, J.Y. Deng, G. Wang, Q. Zhou, and J. Xu: Int. J. Hydrog. Energy, 2021, vol. 46, pp. 26646–64.

    Article  CAS  Google Scholar 

  8. A. Ranzani da Costa, D. Wagner, and F. Patisson: J. Clean. Prod., 2013, vol. 46, pp. 27–35.

    Article  CAS  Google Scholar 

  9. D. Spreitzer and J. Schenk: Steel Res. Int., 2019, vol. 90, p. 1900108.

    Article  Google Scholar 

  10. Y.D. Wang, X.N. Hua, C.C. Zhao, T.T. Fu, W. Li, and W. Wang: Int. J. Hydrog. Energy, 2017, vol. 42, pp. 5667–75.

    Article  CAS  Google Scholar 

  11. B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu: Chin. J. Chem. Eng., 2015, vol. 23, pp. 974–80.

    Article  CAS  Google Scholar 

  12. H.S. Chen, Z. Zheng, and W.Y. Shi: Procedia Eng., 2015, vol. 102, pp. 1726–35.

    Article  CAS  Google Scholar 

  13. H.S. Chen, Z. Zheng, Z.W. Chen, and X.T. Bi: Powder Technol., 2017, vol. 316, pp. 410–20.

    Article  CAS  Google Scholar 

  14. H.Y. Lin, Y.W. Chen, and C.P. Li: Thermochim. Acta, 2003, vol. 400, pp. 61–67.

    Article  CAS  Google Scholar 

  15. T. Zhang, C. Lei, and Q.S. Zhu: Powder Technol., 2014, vol. 254, pp. 1–11.

    Article  CAS  Google Scholar 

  16. G.Y. Lee, J.I. Song, and J.S. Lee: Powder Technol., 2016, vol. 302, pp. 215–21.

    Article  CAS  Google Scholar 

  17. J. Zielinski, I. Zglinicka, L. Znak, and Z. Kaszkur: Appl. Catal. A, 2010, vol. 381, pp. 191–96.

    Article  CAS  Google Scholar 

  18. D. Spreitzer and J. Schenk: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2471–84.

    Article  Google Scholar 

  19. A.A. El-Geassy and V. Rajakumar: Trans. Iron Steel Inst. Jpn, 1985, vol. 25, pp. 449–58.

    Article  CAS  Google Scholar 

  20. D. Xie and G.R. Belton: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 225–34.

    Article  CAS  Google Scholar 

  21. O. El-Sepelgy, N. Alandini, and M. Rueping: Angew. Chem. Int. Ed., 2016, vol. 55, pp. 13602–05.

    Article  CAS  Google Scholar 

  22. B. Weiss, J. Sturn, S. Voglsam, F. Winter, and J. Schenk: Chem. Eng. Sci., 2011, vol. 66, pp. 703–08.

    Article  CAS  Google Scholar 

  23. K. Piotrowski, K. Monda, T. Wiltowski, P. Dydo, and G. Rizeg: Chem. Eng. J., 2007, vol. 131, pp. 73–82.

    Article  CAS  Google Scholar 

  24. M.H. Jeong, D.H. Lee, G.Y. Han, C.H. Shin, M.K. Shin, C.K. Ko, and J.W. Bae: Fuel, 2017, vol. 202, pp. 547–55.

    Article  CAS  Google Scholar 

  25. D.D. Wang, J. Xu, K.H. Ma, Y. Xu, J. Dang, M.Y. Kou, X.W. Lv, and L.Y. Wen: Int. J. Hydrog. Energy., 2017, vol. 42, pp. 14047–57.

    Article  CAS  Google Scholar 

  26. J. Xu and J. Deng: ACS Omega, 2020, vol. 5, pp. 4148–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the Natural Science Foundation of Chongqing, China (cstc2021ycjh-bgzxm0165), the Venture and Innovation Support Program for Chongqing Overseas Returnees (cx2019138) and the National Natural Science Foundation of China (91634106).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Bai, L., Ma, P. et al. An Electric Circuit Analogy Model for Analyzing the Relation Between CO and H2 in Interfacial Reduction Reactions. Metall Mater Trans B 53, 2867–2872 (2022). https://doi.org/10.1007/s11663-022-02570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02570-x

Navigation