Skip to main content
Log in

Effects of Concentration and Temperature on the Viscosity and Thermal Conductivity of Graphene–Fe3O4/Water Hybrid Nanofluid and Development of New Correlation

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

This paper presents the influence of the volume concentration (VC) and temperature on the viscosity and thermal conductivity (TC) of a graphene–Fe3O4/water hybrid nanofluid. The experiments were done for volume concentrations (VCs) of 0.1% to 0.5% at temperatures of 20°C to 60°C. The results show that the thermal conductivity ratio (TCR) increases with the VC and temperature. Moreover, the TCR grew more with the VC percent at higher temperatures. The maximum increase in the TC was 34% at a VC of 0.5% at 60°C. The viscosity got up with the VC and decreased with temperature growth. The maximum increase in the relative viscosity (RV) was 6% at a VC of 0.5% at 60°C. Therefore, the VC affects the viscosity and TC, and a new correlation was suggested according to experimental results with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Experimental Investigation and Performance Evaluation of Parabolic Trough Solar Collector for Hot Water Generation, J. Eng. Therm., 2021, vol. 30, pp. 420–432.

    Article  Google Scholar 

  2. Sedaghat, F., Yousefi, F., and Zolfaghari, H., Experimental Investigation and Modeling of S, N-GQDs Nanofluid Density Using New Equation of State and Artificial Neural Network, J. Eng. Therm., 2019, vol. 28, pp. 276–290.

    Article  Google Scholar 

  3. Hassanzadeh, R. and Tokgoz, N., Thermal-Hydraulic Characteristics of Nanofluid Flow in Corrugated Ducts, J. Eng. Therm., 2017, vol. 26, pp. 498–513.

    Article  Google Scholar 

  4. Urmi, W., Rahman, M.M., and Hamzah, W.A.W., An Experimental Investigation on the Thermophysical Properties of 40% Ethylene Glycol Based TiO2-Al2O3 Hybrid Nanofluids, Int. Commun. Heat Mass Transfer, 2020, vol. 116, p. 104663.

    Article  Google Scholar 

  5. Zhang, X. and Zhang, Y., Heat Transfer and Flow Characteristics of Fe3O4–Water Nanofluids under Magnetic Excitation, Int. J. Therm. Sci., 2021, vol. 163, p. 106826.

    Article  Google Scholar 

  6. Achard, F. and Maxwell, J.C., A Treatise on Electricity and Magnetism, in Landmark Writings in Western Mathematics 1640–1940, Elsevier, 2005, pp. 564–587.

  7. Sandhya, M., Ramasamy, D., Sudhakar, K., Kadirgama, K., Samykano, M., Harun, W.S.W., et al., A Systematic Review on Graphene-Based Nanofluids Application in Renewable Energy Systems: Preparation, Characterization, and Thermophysical Properties, Sustain. Energy Technol. Assess., 2021, vol. 44, p. 101058.

    Article  Google Scholar 

  8. Al-Rabeeah, A.Y., Seres, I., and Farkas, I., Recent Improvements of the Optical and Thermal Performance of the Parabolic Trough Solar Collector Systems, Facta Univesitatis, Ser.: Mech. Engin., 2021; https://doi.org/10.22190/FUME201106030A

    Article  Google Scholar 

  9. Pavı́a, M., Alajami, K., Estellé, P., Desforges, A., and Vigolo, B., A Critical Review on Thermal Conductivity Enhancement of Graphene-Based Nanofluids, Adv. Colloid Interface Sci., 2021, p. 102452.

    Article  Google Scholar 

  10. Ahmad, F., Abdal, S., Ayed, H., Hussain, S., Salim, S., and Almatroud, A.O., The Improved Thermal Efficiency of Maxwell Hybrid Nanofluid Comprising of Graphene Oxide Plus Silver/Kerosene Oil over Stretching Sheet, Case Stud. Therm. Eng., 2021, vol. 27, p. 101257.

    Article  Google Scholar 

  11. Alnaqi, A.A., Alsarraf, J., and Al-Rashed, A.A.A.A., Hydrothermal Effects of Using Two Twisted Tape Inserts in a Parabolic Trough Solar Collector Filled with MgO-MWCNT/Thermal Oil Hybrid Nanofluid, Sustain. Energy Technol. Assess., 2021, vol. 47, p. 101331.

    Article  Google Scholar 

  12. Esfe, M.H., Ahangar, M.R.H., Rejvani, M., Toghraie, D., and Hajmohammad, M.H., Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data, Int. Comm. Heat Mass Transfer, 2016, vol. 75, pp. 192–196.

    Article  Google Scholar 

  13. Sundar, L.S., Mesfin, S., Ramana, E.V., Said, Z., and Sousa, A.C.M., Experimental Investigation of Thermo-Physical Properties, Heat Transfer, Pumping Power, Entropy Generation, and Exergy Efficiency of Nanodiamond + Fe3O4/60: 40% Water-Ethylene Glycol Hybrid Nanofluid Flow in a Tube, Therm. Sci. Eng. Prog., 2021, vol. 21, p. 100799.

    Article  Google Scholar 

  14. Mehrali, M., Sadeghinezhad, E., Akhiani, A.R., Latibari, S.T., Talebian, S., Dolatshahi-Pirouz, A., et al., An Ecofriendly Graphene-Based Nanofluid for Heat Transfer Applications, J. Clean. Prod., 2016, vol. 137, pp. 555–566.

    Article  Google Scholar 

  15. Asadi, A., Alarifi, I.M., and Foong, L.K., An Experimental Study on Characterization, Stability and Dynamic Viscosity of CuO-TiO2/Water Hybrid Nanofluid, J. Mol. Liq., 2020, vol. 307, p. 112987.

    Article  Google Scholar 

  16. Okonkwo, E.C., Wole-Osho, I., Kavaz, D., Abid, M., and Al-Ansari, T., Thermodynamic Evaluation and Optimization of a Flat Plate Collector Operating with Alumina and Iron Mono and Hybrid Nanofluids, Sustain. Energy Technol. Assess., 2020, vol. 37, p. 100636.

    Article  Google Scholar 

  17. Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, pp. 1–18.

  18. Estellé, P., Halelfadl, S., and Thierry, M., Thermal Conductivity of CNT Water Based Nanofluids: Experimental Trends and Models Overview, J. Therm. Eng., 2015, vol. 1, pp. 381–390.

    Article  Google Scholar 

  19. Bushehri, M.K., Mohebbi, A., and Rafsanjani, H.H., Prediction of Thermal Conductivity and Viscosity of Nanofluids by Molecular Dynamics Simulation, J. Eng. Therm., 2016, vol. 25, pp. 389–400.

    Article  Google Scholar 

  20. Li, X., Zou, C., Wang, T., and Lei, X., Rheological Behavior of Ethylene Glycol-Based Sic Nanofluids, Int. J. Heat Mass Transfer, 2015, vol. 84, pp. 925–930.

    Article  Google Scholar 

  21. Afrand, M., Toghraie, D., and Ruhani, B., Effects of Temperature and Nanoparticles Concentration on Rheological Behavior of Fe3O4–Ag/EG Hybrid Nanofluid: An Experimental Study, Exp. Therm. Fluid Sci., 2016, vol. 77, pp. 38–44.

    Article  Google Scholar 

  22. Xian, H.W., Sidik, N.A.C., Aid, S.R., Ken, T.L., and Asako, Y., Review on Preparation Techniques, Properties and Performance of Hybrid Nanofluid in Recent Engineering Applications, J. Adv. Res. Fluid Mech. Therm. Sci., 2018, vol. 45, pp. 1–13.

    Google Scholar 

  23. Sundar, L.S., Singh, M.K., and Sousa, A.C.M., Enhanced Heat Transfer and Friction Factor of MWCNT–Fe3O4/Water Hybrid Nanofluids, Int. Comm. Heat Mass Transfer, 2014, vol. 52, pp. 73–83.

    Article  Google Scholar 

  24. Baby, T.T. and Sundara, R., Synthesis and Transport Properties of Metal Oxide Decorated Graphene Dispersed Nanofluids, J. Phys. Chem. C, 2011, vol. 115, pp. 8527–8533.

    Article  Google Scholar 

  25. Arzani, H.K., Amiri, A., Kazi, S.N., Chew, B.T., and Badarudin, A., Experimental and Numerical Investigation of Thermophysical Properties, Heat Transfer and Pressure Drop of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger, Int. Comm. Heat Mass Transfer, 2015, vol. 68, pp. 267–275.

    Article  Google Scholar 

  26. Mohan, V.B., Lau, K., Hui, D., and Bhattacharyya, D., Graphene-Based Materials and Their Composites: A Review on Production, Applications and Product Limitations, Compos. Part B Eng., 2018, vol. 142, pp. 200–220.

    Article  Google Scholar 

  27. Olabi, A.G., Abdelkareem, M.A., Wilberforce, T., and Sayed, E.T., Application of Graphene in Energy Storage Device—A Review, Renew. Sustain. Energy Rev., 2021, vol. 135, p. 110026.

    Article  Google Scholar 

  28. Huang, J., Yang, L., and Xie, Y., Why the Thermal Conductivity of Graphene Nanofluids is Extremely High?—A New Model Based on Anisotropy and Particle-Free Renovation, J. Mol. Liq., 2021, p. 117326.

    Article  Google Scholar 

  29. Wole-Osho, I., Okonkwo, E.C., Kavaz, D., and Abbasoglu, S., An Experimental Investigation into the Effect of Particle Mixture Ratio on Specific Heat Capacity and Dynamic Viscosity of Al2O3–ZnO Hybrid Nanofluids, Powder Technol., 2020, vol. 363, pp. 699–716.

    Article  Google Scholar 

  30. Babar, H., Sajid, M.U., and Ali, H.M., Viscosity of Hybrid Nanofluids: A Critical Review, Therm. Sci., 2019, vol. 23, pp. 1713–1754.

    Article  Google Scholar 

  31. Kazemi, I., Sefid, M., and Afrand, M., A Novel Comparative Experimental Study on Rheological Behavior of Mono and Hybrid Nanofluids Concerned Graphene and Silica Nano-Powders: Characterization, Stability and Viscosity Measurements, Powder Technol., 2020, vol. 366, pp. 216–229.

    Article  Google Scholar 

  32. Mehrali, M., Sadeghinezhad, E., Rosen, M.A., Latibari, S.T., Mehrali, M., Metselaar, H.S.C., et al., Effect of Specific Surface Area on Convective Heat Transfer of Graphene Nanoplatelet Aqueous Nanofluids, Exp. Therm. Fluid Sci., 2015, vol. 68, pp. 100–108.

    Article  Google Scholar 

  33. Harandi, S.S., Karimipour, A., Afrand, M., Akbari, M., and D’Orazio, A., An Experimental Study On Thermal Conductivity of F-MWCNTs–Fe3O4/EG Hybrid Nanofluid: Effects of Temperature and Concentration, Int. Comm. Heat Mass Transfer, 2016, vol. 76, pp. 171–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Al-Rabeeah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Rabeeah, A.Y., Seres, I. & Farkas, I. Effects of Concentration and Temperature on the Viscosity and Thermal Conductivity of Graphene–Fe3O4/Water Hybrid Nanofluid and Development of New Correlation. J. Engin. Thermophys. 31, 328–339 (2022). https://doi.org/10.1134/S1810232822020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822020138

Navigation