Skip to main content

Advertisement

Log in

An experimental study on polymer cathode materials in lead-acid battery energy storage systems

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The replacement of lead grids with acrylonitrile butadiene styrene (ABS) polymer grids in the negative electrode of lead-acid batteries was studied experimentally, while the positive electrode remained unchanged. A polymer grid was activated by nickel plating using a chemical solution, and then coated with chrome and copper conductive plating. The polymer grid was coated with a layer of lead. Using a lead-coated polymer grid, a 30-amp 12-volt battery was produced and tested, and the results were compared with a 30-hour production line lead-acid battery. The results show that the polymer grid has a strong ability to generate an appropriate voltage in the charge and discharge cycle and create a stable capacity. The results also show the polymer grid weight has decreased significantly (about 50%) compared to the conventional lead grid. In this work, the adhesion of a negative paste to the surface of the polymer grid covered with the lead-exposed expand grid was studied, and the results show that the polymer grid can adhere to the negative dough perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adams, M. Karulkar, Power Sources, 199 (2012).

  2. H. Bode, Lead-acid batteries, John Wiley & Sons, United States (1977).

    Google Scholar 

  3. S. Gheytani, Y. Liang, F. Wu, Y. Jing, H. Dong, K. K. Rao, X. Chi, F. Fang and Y. Yao, Adv. Sci., 4, 1700465 (2017).

    Article  Google Scholar 

  4. A. Czerwiński, J. WrobelLach, K. Wrobel and P. Podsadni, J. Solid State Electrochem., 22, 9 (2018).

    Article  Google Scholar 

  5. J. Joseph, A. P. Mullane and K. Ostrikov, ChemElectroChem., 6 (2019).

  6. D. Xu, L. Shen, F. Oqing, G. Kang, Y. Guan and Z. Peng, J. Energy, 218 (2021).

  7. N. Javani, I. Dincer and G. F. Naterer, J. Power Sources, 5, 268 (2014).

    Google Scholar 

  8. N. Javani, I. Dincer and G. F. Naterer, J. Therm. Sci. Eng. Appl., 7(3), 031005 (2015).

    Article  Google Scholar 

  9. S. M. He, J. Wang, X. Zhang, J. Chen, Z. Wang, T. Yang, Z. Liu, Y. Liang, B. Wang, S. Liu, L. Zhang, J. Huang, J. Huang, L. A. O’Dell and H. Yu, Adv. Funct. Mater., 29, 1905228 (2019).

    Article  CAS  Google Scholar 

  10. M. Angell, C. J. Pan, Y. Rong and H. Dai, Proc. Natl. Acad. Sci., 114 (2017).

  11. S. Kumar, R. Satish, V Verma, H. Ren, P. Kidkhunthodb, W. Manalastas Jr. and M. Srinivasan, J. Power Sources, 426 (2019).

  12. D. Yuan and J. Zhao, J. Manalastas, Sci., 4, 5 (2019).

    Google Scholar 

  13. Z. Hu, Y. Guo, H. Jin, H. Ji and L. A. Wan, Chem. Commun., 56 (2020).

  14. J. AdamsKarulkar, J. Power Sources, 199 (2012).

  15. E. B. Pinxterhuis, J. B. Gualtierotti, S. J. Wezenberg, J. G. Vries and B. L. Feringa, ChemSus.Chem., 11, 1 (2018).

    Article  Google Scholar 

  16. C. Li Z. Zhu, Y. Wang, Q. Guo, C. Wang, P. Zhong, Z. a. Tan and R. Yang, Nano Energy, 69 (2020).

  17. D. Bathauer, J. Renewable Energy Focus., 16 (2015).

  18. G. J. May, A. Davidson and B. Monahov, J. Energy Storage., 15, 145 (2018).

    Article  Google Scholar 

  19. A. J. Davidson, S. P. Binks and J. Gediga, Int. J. Life Cycle Assess., 21 (2016).

  20. D. J. Moomaw, C. K. L. Mui and E. M. Hinojosa, US Patent, 10,693,141 (2020).

  21. A. Czerwiński, J. Wrobel, J. Lach and K. WrobelPodsadni, J. Solid State Electrochem., 22 (2018).

  22. Y. L. Gao, H. Guan, X. Fu, G. He, Y. Zhang, J. Wu and H. Wu, Mater. Chem. Phys., 257, 123757 (2021).

    Article  CAS  Google Scholar 

  23. J. Li, Y. Hu, Y. Zhang, J. Xie and P. K. Shen, J. Electroanal. Chem., 115065 (2021).

  24. K. Varshney, P. K. Varshney, K. Gautam, M. Tanwar and M. Chaudhary, Mater. Today Proceedings, 26 (2020).

  25. H. W. YehChang, C. J. Huang and G. G. Chen, J. Electroanal. Chem., 834, 64 (2019).

    Article  Google Scholar 

  26. S. y. Tan, D. J. Payne and J. P. HallettKelsall, Curr. Opin. Electrochem., 16, 83 (2019).

    Article  CAS  Google Scholar 

  27. C. Hu, J. Li, Q. Lan, T. Lan, J. Zhang, S. Zhou, Y. Rao, Y. Yanzhao and J. Cao, Electrochim. Acta, 384, 138411 (2021).

    Article  CAS  Google Scholar 

  28. M. Soria, J. Fullea, F. Saez and F. Trinidad, J. Power Sources, 78, 220 (1999).

    Article  CAS  Google Scholar 

  29. B. Culpin and K. Peters, J. Power Sources, 144, 2 (2005).

    Article  Google Scholar 

  30. A. Kirchev, N. Kircheva and M. Perrin, J. Power Sources, 19, 620 (2011).

    Google Scholar 

  31. D. Egan, C. Low and F. Walsh, J. Power Sources, 196, 13 (2011).

    Article  Google Scholar 

  32. S. K. Martha, B. Hariprakash and S. A. Gaffoor, J. Chem. Sci., 118, 93 (2006).

    Article  CAS  Google Scholar 

  33. S. Y. Lim, J. Ind. Eng. Chem., 78, 284 (2019).

    Article  CAS  Google Scholar 

  34. M. Asif, M. Rashad, J. H. Shah and S. D. A. Zaid, J. Colloid Interface Sci., 561, 818 (2020).

    Article  CAS  Google Scholar 

  35. N. Pinsky and S. A. Alkaitis, US Patent, 4,713,306 (1987).

  36. S. Shivashankar, US Patent, 6,889,410 (2005).

  37. Z. Hu, Y. Guo and H. Jin, Chem. Commun., 56, 2023 (2020).

    Article  CAS  Google Scholar 

  38. C. Wu, S. H. Gu and Q. H. Zhang, Nat. Commun., 10, 1 (2019).

    Article  Google Scholar 

  39. A. Liu, Z. Shi and R. G. Reddy, Electrochim. Acta, 251 (2017).

  40. S. Pavlovic Zeidan, US Patent, 10,804,540 (2020).

  41. V. Verma, S. Kumar and W. Manalastas, Adv. Sustain. Syst., 3, 1800111 (2019).

    Article  Google Scholar 

  42. W. He, A. Liu, J. Guan, Z. Shi, B. Gao and X. Hu, RSC Adv., 7, 6902 (2017).

    Article  CAS  Google Scholar 

  43. H. W. Yeh, Y. H. Tang and P. Y. Chen, J. Electroanal. Chem., 811, 68 (2018).

    Article  CAS  Google Scholar 

  44. J. C. Y. Jung, P. C. Sui and J. Zhang J. Energy Storage., 35 (2021).

  45. S. He, J. Wang, X. Zhang, J. Zhao, Z. Wang, T. Yang, Z. Liu, Y. Liang, B. Wang, S. Liu, L. Zhang, J. Huang and A. Huang, J. Adv. Funct. Mater., 29, 45 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Jahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahani, D., Nazari, A., Panah, M.Y. et al. An experimental study on polymer cathode materials in lead-acid battery energy storage systems. Korean J. Chem. Eng. 39, 2099–2108 (2022). https://doi.org/10.1007/s11814-022-1130-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1130-3

Keywords

Navigation