Skip to main content
Log in

Effect of Cs(I) and Cr(III) on the adsorption of strontium ion by living irradiated Saccharomyces cerevisiae

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the effects of three coexisting ion systems (Cs, Sr), (Cr, Sr) and (Cs, Cr, Sr) on the adsorption of Sr(II) by irradiated Saccharomyces cerevisiae in solution were investigated. The three systems generally inhibited the adsorption of Sr(II) by yeast. The effects of several environmental factors on yeast adsorption of Sr(II) in coexisting ionic solutions were determined. Three adsorption models, Langmuir, Freundlich and Linear, were used to fit the experimental data. FTIR results showed that the mechanism by which Cs(I) and Cr(III) inhibited the adsorption of Sr(II) was related to the functional groups on the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu Q-H, Weng J-Q, Wang J (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101:426–437. https://doi.org/10.1016/j.jenvrad.2008.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Tanha MR, Hanafiah M, Khalid F, Storai M, Hoeschen C (2019) Current status of radioactive waste management in Afghanistan. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06974-z

    Article  Google Scholar 

  3. Men W, Deng F, He J, Yu W, Wang F, Li Y, Lin F, Lin J, Lin L, Zhang Y, Yu X (2017) Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident. Ecotoxicol Environ Saf 144:601–610. https://doi.org/10.1016/j.ecoenv.2017.06.042

    Article  CAS  PubMed  Google Scholar 

  4. Liu H, Wang J (2013) Treatment of radioactive wastewater using direct contact membrane distillation. J Hazard Mater 261C:307–315. https://doi.org/10.1016/j.jhazmat.2013.07.045

    Article  CAS  Google Scholar 

  5. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  6. Parekh NR, Poskitt J, Dodd BA, Potter E, Sanchez A (2008) Soil microorganisms determine the sorption of radionuclides within organic soil systems. J Environ Radioact 99:841–852. https://doi.org/10.1016/j.jenvrad.2007.10.017

    Article  CAS  PubMed  Google Scholar 

  7. Sen K, Sinha P, Lahiri S (2008) Immobilization of long-lived radionuclides 152,154Eu by selective bioaccumulation in Saccharomyces cerevisiae from a synthetic mixture of 152,154Eu, 137Cs and 60Co. Biochem Eng J 40:363–367. https://doi.org/10.1016/j.bej.2008.01.005

    Article  CAS  Google Scholar 

  8. Zinicovscaia I, Safonov A, Zelenina D, Ershova Y, Boldyrev K (2020) Evaluation of biosorption and bioaccumulation capacity of cyanobacteria Arthrospira (spirulina) platensis for radionuclides. Algal Res 51:102075. https://doi.org/10.1016/j.algal.2020.102075

    Article  Google Scholar 

  9. Hu J, Lv Y, Cui W, Chen W, Li S (2019) Study on treatment of uranium-containing wastewater by biosorption. IOP Conf. Series: Earth and Environ Sci 330:032029. https://doi.org/10.1088/1755-1315/330/3/032029

    Article  Google Scholar 

  10. Kim T, Hong J, Park HM, Lee U, Lee S-Y (2020) Decontamination of low-level contaminated water from radioactive cesium and cobalt using microalgae. J Radioanal Nucl Chem 323:1–6. https://doi.org/10.1007/s10967-019-07008-4

    Article  CAS  Google Scholar 

  11. Fomina M, Gadd G (2014) Biosorption: current perspectives on concept, definition and application. Biores Technol. https://doi.org/10.1016/j.biortech.2013.12.102

    Article  Google Scholar 

  12. Niedrée B, Berns A, Vereecken H, Burauel P (2012) Do Chernobyl-like contaminations with (137)Cs and (90)Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil? J Environ Radioact 118C:21–29. https://doi.org/10.1016/j.jenvrad.2012.11.007

    Article  CAS  Google Scholar 

  13. Bhatt N, Bagla H (2011) Biosorption of radiotoxic 90Sr by green adsorbent: dry cow dung powder. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-011-1539-3

    Article  Google Scholar 

  14. Shin J, Lee Y-G, Kwak J, Kim S, Lee S-H, Park Y, Lee S-D, Chon K (2021) Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J Environ Chem Eng 9:105119. https://doi.org/10.1016/j.jece.2021.105119

    Article  CAS  Google Scholar 

  15. Faghihian H, Peyvandi S (2012) Adsorption isotherm for uranyl biosorption by Saccharomyces cerevisiae biomass. J Radioanal Nucl Chem 293:463–468. https://doi.org/10.1007/s10967-012-1814-y

    Article  CAS  Google Scholar 

  16. Qiu L, Feng J, Dai Y, Chang S (2017) Biosorption of the strontium ion by irradiated Saccharomyces cerevisiae under culture conditions. J Environ Radioact 172:52–62. https://doi.org/10.1016/j.jenvrad.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  17. Dai S, Yang S, Zhou D (2012) The influence of coexisting ions on adsorption-flotation of Pb2+ in water by gordona amarae. Adv Mater Res 433–440:183–187. https://doi.org/10.4028/www.scientific.net/AMR.433-440.183

    Article  CAS  Google Scholar 

  18. Ni B-J, Huang Q-S, Wang C, Ni T-Y, Sun J, Wei W (2018) Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere. https://doi.org/10.1016/j.chemosphere.2018.12.053

    Article  PubMed  Google Scholar 

  19. Deng l, Zhu X, Su Y, Su H, Wang X (2008) Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chin J Oceanol Limnol 26:45–49. https://doi.org/10.1007/s00343-008-0045-0

    Article  CAS  Google Scholar 

  20. Imran M, Anwar K, Akram M, Shah G, Ahmad I, Shah N, Khan ZUH, Rashid M, Akhtar M, Ahmad S, Nawaz M, Schotting R (2019) Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies. Int J Phytorem 21:1–13. https://doi.org/10.1080/15226514.2019.1566880

    Article  CAS  Google Scholar 

  21. Tan Y, Feng J, Qiu L, Zhao Z, Zhang X, Zhang H (2017) The adsorption of Sr(II) and Cs(I) ions by irradiated Saccharomyces cerevisiae. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-017-5598-y

    Article  Google Scholar 

  22. Aranda-García E, Chávez-Camarillo G, Cristiani-Urbina E (2020) Effect of Ionic strength and coexisting ions on the biosorption of Divalent nickel by the acorn shell of the oak quercus crassipes Humb. & Bonpl. Processes 8:1229. https://doi.org/10.3390/pr8101229

    Article  CAS  Google Scholar 

  23. Huang Y, Li M, Yang Y, Zeng Q, Praburaman L, Hu L, Zhong H, He Z (2020) Sulfobacillus thermosulfidooxidans: an acidophile isolated from acid hot spring for the biosorption of heavy metal ions. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02669-1

    Article  Google Scholar 

  24. Limousin G, Gaudet J-P, Charlet L, Szenknect S, Barthès V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010

    Article  CAS  Google Scholar 

  25. Ahalya N, Ramachandra T, Kanamadi R (2003) Biosorption of heavy metals. Res J Chem Environ 7:71–79

    CAS  Google Scholar 

  26. Zinicovscaia I, Yushin N, Abdusamadzoda D, Grozdov D, Shvetsova M (2020) Efficient removal of metals from synthetic and real galvanic zinc-containing effluents by Brewer’s yeast saccharomyces cerevisiae. Materials 13:3624. https://doi.org/10.3390/ma13163624

    Article  CAS  PubMed Central  Google Scholar 

  27. Göksungur MY, Uren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste Baker’s yeast biomass. Biores Technol 96:103–109. https://doi.org/10.1016/j.biortech.2003.04.002

    Article  CAS  Google Scholar 

  28. Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Bio/Technol 18:231–269

    Article  CAS  Google Scholar 

  29. Ngwenya N, Chirwa E (2010) Single and binary component sorption of the fission products Sr2+, Cs+ and Co2+ from aqueous solutions onto sulphate reducing bacteria. Miner Eng 23:463–470. https://doi.org/10.1016/j.mineng.2009.11.006

    Article  CAS  Google Scholar 

  30. Blázquez G, Hernáinz F, Calero M, Tenorio G (2009) The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chem Eng J 148:473–479. https://doi.org/10.1016/j.cej.2008.09.026

    Article  CAS  Google Scholar 

  31. Schmitt J, Flemming H-C (1998) FTIR spectroscopy in microbial and material analysis. Int Biodeterior Biodegrad 41:1–11. https://doi.org/10.1016/S0964-8305(98)80002-4

    Article  CAS  Google Scholar 

  32. Qiu L, Feng J, Dai Y, Chang S (2018) Biosorption of strontium ions from simulated high-level liquid waste by living Saccharomyces cerevisiae. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1662-6

    Article  Google Scholar 

  33. Kuppusamy V, Palanivelu K, Manickam V (2006) Biosorption of Copper(II) and Cobalt(II) from Aqueous solution by crab shell particles. Biores Technol 97:1411–1419. https://doi.org/10.1016/j.biortech.2005.07.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No.11705089) and Natural Science Foundation of Jiangsu Province 331 (SBK201404182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundong Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wang, W., Zhao, X. et al. Effect of Cs(I) and Cr(III) on the adsorption of strontium ion by living irradiated Saccharomyces cerevisiae. J Radioanal Nucl Chem 331, 3093–3105 (2022). https://doi.org/10.1007/s10967-022-08356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08356-4

Keywords

Navigation