Skip to main content
Log in

Solidification of LiCl–Li2O oxide reduction salt into sodalite by a spark plasma sintering

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The waste LiCl–Li2O oxide reduction salt was solidified and transformed into sodalite by the spark plasma sintering method. Compared with traditional solidification method, SPS operates at a lower pressure, lower temperature, shorter processing time, and without sintering additive. The SPS-solidified sodalite presents a low porosity of 0.37% and low leaching rates of 2.21 g m–2 d–1 for Cs, 3.05 × 10–1 g m–2 d–1 for Ba, and 3.12 × 10–1 g m–2 d–1 for Sr. Overall, the SPS is a promising method to solidify various waste OR salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yoo H, Lee N, Ham T, Seo J (2015) Methodology for analyzing risk at nuclear facilities. Ann Nucl Energy 81:213–218

    Article  CAS  Google Scholar 

  2. Frank S, Ebert W, Riley B, Park HS, Cho YZ, Lee CH, Jeon MK, Yang JH, Eun HC (2015) Waste stream treatment and waste form fabrication for pyroprocessing of used nuclear fuel. Idaho National Laboratory, Idaho Falls

    Google Scholar 

  3. Hyung YJ, Kuk KJ, Soo LH, Seok SI, Ka KE (2011) patent analysis for pyroprocessing of spent nuclear fuels. J Nucl Fuel Cycle Waste Technol 9:247–258

    Article  Google Scholar 

  4. Gombert D, Ebert W, Marra J, Jubin R, Vienna J (2008) Global nuclear energy partnership waste treatment baseline. Idaho National Laboratory, Idaho Falls

    Google Scholar 

  5. Cassingham NJ, Corkhill CL, Stennett MC, Hand RJ, Hyatt NC (2016) Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: a vapour hydration study. J Nucl Mater 479:639–646

    Article  CAS  Google Scholar 

  6. Lee O, Stennett H (2006) Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Adv Appl Ceram 105:3–12

    Article  CAS  Google Scholar 

  7. Fanghänel T, Glatz JP, Konings RJM, Rondinella VV, Somers J (2010) Transuranium elements in the nuclear fuel cycle. In: Cacuci DG (ed) Handbook of nuclear engineering. Springer, Boston

    Google Scholar 

  8. Sridhar TS, Solomah AG (1989) SYNROC-FA waste form for immobilization of amine high-level liquid waste: process development and product characterization. Nucl Technol 22:5694–234791

    Google Scholar 

  9. McCloy JS, Schweiger MJ, Rodriguez CP, Vienna JD (2011) Nepheline crystallization in nuclear waste glasses: progress toward acceptance of high-alumina formulations. Int J Appl Glass Sci 2:201–214

    Article  CAS  Google Scholar 

  10. Dong Z, White TJ, Wei B, Laursen K (2002) Model apatite systems for the stabilization of toxic metals: I, calcium lead vanadate. J Am Ceram Soc 85:15–22

    Article  Google Scholar 

  11. Vance ER, Davis J, Olufson K, Chironi I, Karatchevtseva I, Farnan I (2011) Candidate waste forms for immobilisation of waste chloride salt from pyroprocessing of spent nuclear fuel. J Nucl Mater 420:396–404

    Article  Google Scholar 

  12. Wang LQ, Mattigod SV, Parker KE, Hobbs DT, McCready DE (2005) Nuclear magnetic resonance studies of aluminosilicate gels prepared in high-alkaline and salt-concentrated solutions. J Non Cryst Solids 351:43–45

    Google Scholar 

  13. Ocanto F, Alvarez R, Navarro CU, Lieb A, Linares CF (2008) Influence of the alkalinity and NO3/Cl anionic composition on the synthesis of the cancrinite–sodalite system. Micropor Mesopor Mater 116:318–322

    Article  CAS  Google Scholar 

  14. Albina IO, Michael IO (2019) Ceramic mineral waste-forms for nuclear waste immobilization. Mater 12:26–38

    Google Scholar 

  15. Blasse G, Dirksen GJ, Brenchley ME, Weller MT (1995) Luminescence of Zn4X and Cd4X clusters (X = S, Se) in an aluminate or borate cag. Chem Phys Lett 234:177–181

    Article  CAS  Google Scholar 

  16. Williams ER, Simmonds A, Armstrong JA, Weller MT (2010) Compositional and structural control of tenebrescence. J Mater Chem 20:10883–10887

    Article  CAS  Google Scholar 

  17. Frank S, Barber T, Lambregts M (2005) Powder diffraction of sodalite in a multiphase ceramic used to immobilize radioactive waste. Powder Differ 20:212–214

    Article  CAS  Google Scholar 

  18. Casas RN, Guijosa AN, Calahorro CV, LópezGonzález JD, Rodríguez AG (2007) Study of lithium ion exchange by two synthetic zeolites: kinetics and equilibrium. J Colloid Interface Sci 306:345–353

    Article  Google Scholar 

  19. Lepry WC, Riley BJ, Crum JV, Rodriguez CP, Pierce DA (2013) Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts. J Nucl Mater 442:350–359

    Article  CAS  Google Scholar 

  20. Riley BJ, Pierce DA, Frank SM, Matyáš J, Burn CA (2015) Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel. J Nucl Mater 459:313–322

    Article  CAS  Google Scholar 

  21. Riley BJ, Crum JV, Matyáš J, McCloy JS, Lepry WC (2012) Solution-derived, chloride-containing minerals as a waste form for alkali chlorides. J Am Ceram Soc 95:3115–3123

    Article  CAS  Google Scholar 

  22. Mamedov, (2004) New technological approach to fabrication of high density PM parts by cold pressing sintering. Powder Metall 47:278–284

    Article  CAS  Google Scholar 

  23. Batista LA, Felisberto MDV, Silva LS, Cunha TH, Mazzer EM (2019) Influence of multi-walled carbon nanotubes reinforcements on hardness and abrasion behaviour of porous Al–matrix composite processed by cold pressing and sintering. J Alloys Compd 791:96–99

    Article  CAS  Google Scholar 

  24. Riley BJ, Peterson JA, Kroll JO, Frank SM (2018) Immobilization of LiCl–Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods. J Nucl Mater 502:236–246

    Article  CAS  Google Scholar 

  25. Vance ER, Gregg DJ, Karatchevtseva I, Davis J, Ionescu M (2014) He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl. J Nucl Mater 453:307–312

    Article  CAS  Google Scholar 

  26. Chong S, Peterson JA, Riley BJ, Tabada D, Wall D, Corkhill CL, McCloy JS (2018) Glass-bonded iodosodalite waste form for immobilization of 129I. J Nucl Mater 504:109–121

    Article  CAS  Google Scholar 

  27. Cheary RW, Coelho AA, Cline JP (2004) Fundamental parameters line profile fitting in laboratory diffractometers. J Res Natl Inst Stand Technol 109:1–25

    Article  CAS  Google Scholar 

  28. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 20:60–309

    Google Scholar 

  29. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  30. Kim IT, Park HS, Park SW, Kim EH (2008) Alternative technology for the treatment of waste LiCl salt by using gelation with a Si–P–Al material system and a subsequent thermal conditioning method. Nucl Technol 162:219–228

    Article  CAS  Google Scholar 

  31. Dickson JO, Harsh JB, Lukens WW, Pierce EM (2015) Perrhenate incorporation into binary mixed sodalites: the role of anion size and implications for technetium-99 sequestration. Chem Geol 395:138–143

    Article  CAS  Google Scholar 

  32. Tamazyan RA, Malinovskii YA, Il’inets AM, (1988) Generalized symmetry in crystal physics. Kristallografiya 33:325–329

    Google Scholar 

  33. Takashi M (1983) Immobilization of high level radioactive waste in ceramic waste forms. Nippon Suisan Gakkai Shi 25:168–178

    Google Scholar 

  34. Hancox WT, Nuttall K (1991) The Canadian approach to safe, permanent disposal of nuclear fuel waste. Nucl Eng Des 129:109–117

    Article  CAS  Google Scholar 

  35. Wei X, Maximenko AL, Back C, Izhvanov O, Olevsky EA (2017) Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation. Philos Mag Lett 97:265–272

    Article  CAS  Google Scholar 

  36. Sinkler W, O’Holleran TP, Frank SM, Richmann MK, Johnson SG (1999) Characterization of a glass-bonded ceramic waste form loaded with U and Pu. MRS Online Pro Lib 608:423–429

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52031008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dihua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Gao, S., Li, P. et al. Solidification of LiCl–Li2O oxide reduction salt into sodalite by a spark plasma sintering. J Radioanal Nucl Chem 331, 2919–2928 (2022). https://doi.org/10.1007/s10967-022-08376-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08376-0

Keywords

Navigation