Skip to main content
Log in

Effects of the photocathode non-uniformity on radon measurements by plastic scintillation spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This work shows a study of the effect of the non-uniformity of photocathode response on the energy resolution of plastic scintillators optimized for pulse-shape discrimination. The studies were performed with Hamamatsu R7600U-200 and R9779 photomultiplier tubes. The pulse-height and pulse-shape spectra were obtained for a small piece of radon-222 loaded plastic scintillator positioned at different places on the photocathode. We show that alpha spectra can be approximated well with a normal distribution if the non-uniformity of the photon response of the photocathode is minimized. In the cases when the non-uniformity cannot be minimized, we propose an analytical function which describes the shape of the alpha peaks well under a variety of conditions. A possible effect of the non-uniformity of the photocathode response on the primary activity measurements by liquid scintillation counting is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Knoll GF (2010) Radiation Detection and Measurement. Wiley, New York

    Google Scholar 

  2. Leskovar B, Lo CC (1972) Performance Studies of Photomutipliers Having Dynodes with GaP(Cs) Secondary Emitting Surface. IEEE Trans Nucl Sci 19(3):50–62. https://doi.org/10.1109/tns.1972.4326702.

    Article  CAS  Google Scholar 

  3. Paul JM (1970) Studies concerning the behaviour of photomultiplier with large photocathode. Nucl Instrum Methods 89:285–287. https://doi.org/10.1016/0029-554x(70)90836-0.

    Article  Google Scholar 

  4. Mitev KK (2016) Measurement of 222 Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination. Appl Radiat Isot 110:236–243. https://doi.org/10.1016/j.apradiso.2016.01.027.

    Article  CAS  PubMed  Google Scholar 

  5. Mitev K, Dutsov C, Georgiev S, Tsankov L, Boshkova T (2017) Study of 222Rn Absorption and Detection Properties of EJ-212 and BC-400 Plastic Scintillators. IEEE Transactions on Nuclear Science 64(6):1592–1598 https://doi.org/10.1109/tns.2017.2699041

  6. Bauer F, Aykac M, Loope M, Williams, CW, Eriksson LA, Schmand M (n.d.) (2005) Performance Study of the new Hamamatsu R9779 and Photonis XP20D0 fast 2” Photomultipliers. IEEE Nuclear Science Symposium Conference Recordhttps://doi.org/10.1109/nssmic.2005.1596942

  7. Kossakowski R, Audemer JC, Dubois JM, Fougeron D, Hermel R, et al. (2002) Study of the photomultiplier R7600-00-M4 for the purpose of the electromagnetic calorimeter in the AMS-02 experiment http://hal.in2p3.fr/in2p3-00021475

  8. Hamamatsu R7600U-200 photomultiplier tube datasheet https://www.hamamatsu.com/resources/pdf/etd/R7600U_TPMH1317E.pdf Accessed 21 Nov 2021

  9. Hamamatsu R9779 photomultiplier tube datasheet https://www.artisantg.com/info/Hamamatsu_R9779_Datasheet_201727162455.pdf Accessed 21 Nov 2021

  10. NanoPSD Yantel (labZY) https://www.yantel.com/products/nanopsd/ Accessed 21 Nov 2021

  11. Jordanov VT (2018) Pile-Up Real Time Pulse-Shape Discrimination Based on Ballistic Deficit Measurement and Digital Time-Invariant Pulse Shaping. IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) https://doi.org/10.1109/nssmic.2018.8824502

  12. Mitev K, Cassette P (2021) In: Hamel M (ed) Plastic Scintillators Chemistry and Applications. Springer Nature, Switzerland

    Google Scholar 

  13. L’Hoir A (1984) Study of the asymmetrical response of silicon surface barrier detectors to MeV light ions. Application to the precise analysis of light ions energy spectra I. Helium ions. Nucl Instrum Methods Phys Res 223(2–3):336–345. https://doi.org/10.1016/0167-5087(84)90671-9.

    Article  Google Scholar 

  14. Pommé S, Caro Marroyo B (2015) Improved peak shape fitting in alpha spectra. Appl Radiation Isot 96:148–153. https://doi.org/10.1016/j.apradiso.2014.11.023.

    Article  CAS  Google Scholar 

  15. Pommé S, Sibbens G (2008) Alpha-particle counting and spectrometry in a primary standardisation laboratory. Acta chimica Slovenica 55(1):111–119

    Google Scholar 

  16. Kolev S (2017) Application of the exponentially modified Gaussian distribution for peak shape modeling of alpha-peaks in alpha-spectra. Annual of Sofia University “St. Kliment Ohridski”, Faculty of Physics 110:121–128

  17. Rn-222 tables http://www.lnhb.fr/nuclides/Rn-222_tables.pdf. Accessed 21 Nov 2021

  18. Newville M, Stensitzki T, Allen D, Ingargiola A, Lmfit Non-linear least-square minimization and curve-fitting for python https://lmfit.github.io/lmfit-py/intro.html Accessed 21 Nov 2021

  19. Broda R, Cassette P, Kossert K (2007) Radionuclide metrology using liquid scintillation counting. Metrologia 44(4):S36–S52. https://doi.org/10.1088/0026-1394/44/4/s06.

    Article  CAS  Google Scholar 

  20. Grau Malonda A (1999) Free parameter models in liquid scintillation counting Colección Documentos CIEMAT

Download references

Acknowledgements

This work is supported by the Bulgarian National Scientific Research Fund under contract KP-06-H38/9 from 06.12.19 (TDCX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krasimir K. Mitev.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorov, V.T., Dutsov, C.C., Cassette, P. et al. Effects of the photocathode non-uniformity on radon measurements by plastic scintillation spectrometry. J Radioanal Nucl Chem 331, 3249–3258 (2022). https://doi.org/10.1007/s10967-022-08362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08362-6

Keywords

Navigation