Skip to main content
Log in

Synthesis and Characterization of Novel Biobased Ion-Exchange Bisfuran Polyamides Prepared by Interfacial Polycondensation of Bisfuran Diamine Monomer and Sustainable Dicarboxylic Acid Derivatives

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymers based on the furanic compounds derived from renewable carbohydrates have seen massive growth due to their unique properties and increasing concerns about sustainability and environmental challenges. In this study, fully bio-based four new linear ion-exchange polyamides were synthesized by interfacial polymerization of bisfuran diamine monomer (BFN). The BFN monomer is prepared by condensing 2-aminomethyl furan with levulinic acid using an acid catalyst. The bisfuran polyamides are generally considered hydrophilic, with an observed swelling capacity range from 108 to 192%. The ion exchange capacity range was observed from 2.19 to 2.35. The thermal properties of the bisfuran polyamides were studied with differential scanning calorimetry and thermal gravimetric analysis. The glass transition values were ranged from 162.2 to 122.1 °C, and the 1% mass loss at temperatures was above 215 °C. An X-ray diffraction study proves amorphous nature with some degree of crystallinity at θ = 20°.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babu RP, Connor KO, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:1–16

    Article  Google Scholar 

  2. Gandini A, Coelho D, Reis B, Silvestre A (2009) Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater Chem 19:8656–8664

    Article  CAS  Google Scholar 

  3. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  4. Xu Y, Hanna MA, Isom L (2008) “ Green ” chemicals from renewable agricultural biomass: a mini review. Open Agric J. 2:54–61

    Article  CAS  Google Scholar 

  5. Mathers RT (2012) How well can renewable resources mimic commodity monomers and polymers ? J Polym Sci Part A Polym Chem 50:1–15

    Article  CAS  Google Scholar 

  6. George Z, Papageorgiou VT, Bikiaris D (2014) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16:7946–7958

    Article  Google Scholar 

  7. Lavilla C, Alla A, Galbis JA (2012) Bio-based aromatic polyesters from a novel bicyclic diol derived from d-mannitol. Macromolecules 45:8257–8266

    Article  CAS  Google Scholar 

  8. Lilga MA, Hallen RT, Gray M (2010) Production of oxidized derivatives of 5-hydroxymethylfurfural ( HMF ). Top Catal 53:1264–1269

    Article  CAS  Google Scholar 

  9. Kashparova VP, Chernysheva DV, Klushin VA, Andreeva VE, Kravchenko OA, Smirnova NV (2021) Furan monomers and polymers from renewable plant biomass. Russ Chem Rev 90:750–784

    Article  Google Scholar 

  10. Gaitonde V, Lee K, Kirschbaum K, Sucheck SJ (2014) Bio-based bisfuran: synthesis, crystal structure, and low molecular weight amorphous polyester. Tetrahedron Lett 55:4141–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Abid M, Mhiri S, Bougarech A, Triki R, Abid S (2020) Preparation, characterization and degradation study of novel sulfonated furanic poly(ester-amide)s. Des Monomers Polym 23:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Okada M, Tachikawa K, Aoi K (1997) Biodegradable polymers based on renewable resources. II. Synthesis and biodegradability of polyesters containing furan rings. J Polym Sci Part A Polym Chem 35:2729–2737

    Article  CAS  Google Scholar 

  13. Gharbi L, Gandini A (1998) Polyesters bearing furan moieties, 2. A detailed investigation of the polytransesterification of difuranic diesters with different diols. Macromol Chem Phys 12:2755–2765

    Google Scholar 

  14. Sanderson RD, Schneider DF (1994) Synthesis and evaluation of dialkyl furan-2,5-dicarboxylates as plasticizers for PVC. J Appl Polym Sci 53:1785–1793

    Article  CAS  Google Scholar 

  15. Guidotti G, Soccio M, García-Gutiérrez MC, Ezquerra T, Siracusa V, Gutiérrez-Fernández E (2020) fully biobased superpolymers of 2,5-furandicarboxylic acid with different functional properties: from rigid to flexible, high performant packaging materials. Sustain Chem Eng 8:9558–9568

    Article  CAS  Google Scholar 

  16. Zaidi S, Soares MJ, Bougarech A, Thiyagarajan S, Guigo N, Abid S (2021) Unravelling the para- and ortho-benzene substituent effect on the glass transition of renewable wholly (hetero-)aromatic polyesters bearing 2,5-furandicarboxylic moieties. Eur Polym J 150:110413

    Article  CAS  Google Scholar 

  17. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983

    Article  CAS  Google Scholar 

  18. Sousa AF, Coelho JFJ, Silvestre AJD (2016) Renewable-based poly((ether)ester)s from 2,5-furandicarboxylic acid. Polymer 98:129–135

    Article  CAS  Google Scholar 

  19. Matos M, Cordeiro RA, Faneca H, Coelho JFJ, Silvestre AJD, Sousa AF (2019) replacing i(d2-ethylhexyl) terephthalate by di(2-ethylhexyl) 2,5-furandicarboxylate for PVC plasticization: synthesis, materials preparation and characterization. Materials 12:2336

    Article  CAS  PubMed Central  Google Scholar 

  20. Triki R, Abid M, Tessier M, Abid S, El R, Fradet A (2013) Furan-based poly(ester amide) s by bulk copolycondensation. Eur Polym J 49:1852–1860

    Article  CAS  Google Scholar 

  21. Afli A, Gharbi S, El R, Le Y, Gandini A (2002) A preliminary study on polyhydrazides incorporating furan moieties. Eur Polym J 38:667–673

    Article  CAS  Google Scholar 

  22. Ghorbel I, Afli A, Abid S, Tessier M, El Gharbi R, Fradet A (2011) Furan-based polysemiacylcarbazides by polyaddition of bis(furanic hydrazide)s with diisocyanates. J Macromol Sci Part A Pure Appl Chem 48:433–440

    Article  CAS  Google Scholar 

  23. Pennanen S, Nyman G (1972) Studies on the furan series part I. acidic condensation of aldehydes with methyl 2-furoate. Acta Chem Scand 26:1018–1022

    Article  CAS  Google Scholar 

  24. Skouta M, Lesimple A, Le BY (2013) New method for the synthesis of difuranic diamines and tetrafuranic tetra-amines. Synth Commun 24:37–41

    Google Scholar 

  25. Cawsea JL, Stanford JL, Still RH (1984) Polymers from renewable sources, 1 Diamines and diisocyanates containing difurylalkane moieties. Makromol Chem 185:697–707

    Article  Google Scholar 

  26. Ziach K, Jurczak J (2015) Chiral crystals from dynamic combinatorial libraries of achiral macrocyclic imines. Cryst Growth Des 15:4372–4376

    Article  CAS  Google Scholar 

  27. Hayashi S, Narita A, Wasano T, Tachibana Y, Kasuya K (2019) Synthesis and cross-linking behavior of biobased polyesters composed of bi(furfuryl alcohol). Eur Polym J 121:109333

    Article  CAS  Google Scholar 

  28. Ortega Sánchez S, Marra F, Dibenedetto A, Aresta M, Grassi A (2014) ATR copolymerization of styrene with 2-vinylfuran: an entry to functional styrenic polymers. Macromolecules 47:7129–7137

    Article  Google Scholar 

  29. Zaldívar D, Peniche C, Bulay A, Román JS (1992) Free radical copolymerization of furfuryl methacrylate and N-vinylpyrrolidone. Polymer 33:4625–4629

    Article  Google Scholar 

  30. Sain S, Åkesson D, Skrifvars M (2020) Synthesis and properties of thermosets from tung oil and furfuryl methacrylate. Polymers 12:1–16

    Article  Google Scholar 

  31. Bougarech A, Abid M, Gouanvé F, Espuche E, Abid S, Gharbi REL, Fleury E (2013) Synthesis, characterization and water sorption study of new biobased (furanic- sulfonated) copolyesters. Polymer 54:5482–5489

    Article  CAS  Google Scholar 

  32. Bougarech A, Abid M, DaCruz-Boisson F, Abid S, Gharbi REL, Fleury E (2014) Modulation of furanic-sulfonated isophthalic copolyesters properties through diols units control. Eur Polym J 58:207–217

    Article  CAS  Google Scholar 

  33. Hbaieb S, Kammoun W, Delaite C, Abid M (2015) new copolyesters containing aliphatic and bio-based furanic units by bulk copolycondensation. J Macromol Sci Part A 52:365–373

    Article  CAS  Google Scholar 

  34. Ali DK, Al-zuheiri AM, Sweileh BA (2017) pH and reduction sensitive bio-based polyamides derived from renewable dicarboxylic acid monomers and cystine amino acid. Int J Polym Anal Charact 22:361–373

    Article  CAS  Google Scholar 

  35. Abid S, El R, Gandini A (2004) Polyamides incorporating furan moieties. 5. Synthesis and characterisation of furan-aromatic homologues. Polymer 45:5793–5801

    Article  CAS  Google Scholar 

  36. Ali DK, Sweileh BA (2020) Green ion-exchange bisfuranic polyamides by polycondensation with bio-based diamines. Green Mater 8:24–31

    Article  Google Scholar 

  37. Gharbi S, Afli A, Gharbi RE, Gandini A (2001) Polyamides incorporating furan moieties: 4. Synthesis, characterisation and properties of a homologous series. Polym Int 50:509–514

    Article  CAS  Google Scholar 

  38. Gharbi S, Gandini A, De SL, Franc E (1999) Polyamides incorporating furan moieties. 1. Interfacial polycondensation of 2,29-bis(5-chloroformyl-2-furyl)propane with 1,6-diaminohexane. Acta Polym 50:293–297

    Article  CAS  Google Scholar 

  39. Gaddour M, Bougarech A, Abid M, Abid S (2019) Biobased furano-pyridinic copolyamide-imides preparation, characterization and degradation study. J Polym Res 26:1–11

    Article  CAS  Google Scholar 

  40. Fonseca AC, Gil MH, Simões PN (2014) Biodegradable poly(ester amide)s: a remarkable opportunity for the biomedical area: review on the synthesis, characterization and applications. Prog Polym Sci 39:1291–1311

    Article  CAS  Google Scholar 

  41. Boufi S, Gandini A, Belgacem MN (1995) Urethanes and polyurethanes bearing furan moieties: 5. Thermoplastic elastomers based on sequenced structures. Polymer 36:1689–1696

    Article  CAS  Google Scholar 

  42. M’Bareck CO, Nguyen QT, Alexandre S, Zimmerlin I (2006) Fabrication of ion-exchange ultrafiltration membranes for water treatment. I. Semi-interpenetrating polymer networks of polysulfone and poly(acrylic acid). J Memb Sci 278:8–10

    Article  Google Scholar 

  43. Srikanth MV, Sunil SA, Rao NS, Uhumwangho MU, Ramana Murthy KV (2010) Ion-exchange resins as controlled drug delivery carriers. J Sci Res 2:597–611

    Article  CAS  Google Scholar 

  44. Barbara P, Liguori F (2009) Ion exchange resins: catalyst recovery and recycle. Chem Rev 109:515–529

    Article  Google Scholar 

  45. Han SY, Yu DM, Mo YH, Ahn SM, Lee JY, Kim TH (2021) Ion exchange capacity controlled biphenol-based sulfonated poly(arylene ether sulfone) for polymer electrolyte membrane water electrolyzers: comparison of random and multi-block copolymers. J Memb Sci 634:119370

    Article  CAS  Google Scholar 

  46. Lee SW, Abdi ZG, Chen JC, Chen KH (2021) Optimal method for preparing sulfonated polyaryletherketones with high ion exchange capacity by acid-catalyzed crosslinking for proton exchange membrane fuel cells. J Polym Sci 59:706–720

    Article  CAS  Google Scholar 

  47. Ali DK, Sweileh BA (2018) Novel Bio-based bisfuranic polyesters by interchange reactions between bisfuranic diester bearing pendent carboxylic acid group and bio-based dihydroxy compounds. J Polym Environ 26:1940–1949

    Article  CAS  Google Scholar 

  48. Yang ML, Wu YX, Liu Y, Qiu JJ, Liu CM (2019) A novel bio-based AB2 monomer for preparing hyperbranched polyamides derived from levulinic acid and furfurylamine. Polym Chem 10:6217–6226

    Article  CAS  Google Scholar 

  49. Zhu HX, Liu Y, Wu YX, Qiu JJ, Liu CM (2020) Unique self-catalyzed bio-benzoxazine derived from novel renewable acid-containing diamines based on levulinic acid and furfurylamine: synthesis, curing behaviors and properties. React Funct Polym 155:104716

    Article  CAS  Google Scholar 

  50. Kim JM, Beckingham BS (2021) Transport and co-transport of carboxylate ions and alcohols in cation exchange membranes. J Polym Sci 59:2545–2558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Isra University (Jordan) for funding Dr. Dalia Ali (Grant 416-29/2018/2019), and the author gratefully acknowledges The University of Jordan for supporting NMR and thermal analysis.

Funding

Funding was provided by Isra University (Grant No.: 416-29/2018/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia Khalil Ali.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, D.K. Synthesis and Characterization of Novel Biobased Ion-Exchange Bisfuran Polyamides Prepared by Interfacial Polycondensation of Bisfuran Diamine Monomer and Sustainable Dicarboxylic Acid Derivatives. J Polym Environ 30, 4102–4113 (2022). https://doi.org/10.1007/s10924-022-02496-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02496-0

Keywords

Navigation