Issue 17, 2022

Status and challenges for molecular solar thermal energy storage system based devices

Abstract

Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications.

Graphical abstract: Status and challenges for molecular solar thermal energy storage system based devices

Article information

Article type
Tutorial Review
Submitted
14 Apr 2022
First published
21 Jun 2022
This article is Open Access
Creative Commons BY license

Chem. Soc. Rev., 2022,51, 7313-7326

Status and challenges for molecular solar thermal energy storage system based devices

Z. Wang, H. Hölzel and K. Moth-Poulsen, Chem. Soc. Rev., 2022, 51, 7313 DOI: 10.1039/D1CS00890K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements