Skip to main content
Log in

On efficiency of some restricted estimators in a multivariate regression model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

A Correction to this article was published on 23 July 2022

This article has been updated

Abstract

In this paper, we study a constrained estimation problem in a multivariate measurement error regression model. In particular, we derive the joint asymptotic normality of the unrestricted estimator (UE) and the restricted estimators (REs) of the matrix of the regression coefficients. The derived result holds under the hypothesized restriction as well as under the sequence of alternative restrictions. In addition, we establish Asymptotic Distributional Risk for the UE and the REs and compare their relative performance. It is established that near the restriction, the restricted estimators (REs) perform better than the UE. But the REs perform worse than the UE when one moves far away from the restriction. Further, we explore by simulation the performance of the shrinkage estimators (SEs). The numerical findings corroborate the established theoretical results about the relative risk dominance between the REs and the UE. The findings also show that near the restriction, the REs dominate SEs but as one moves far away from the restriction, REs perform poorly while SEs dominate always the UE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Ahmed SE, Hussein A, Nkurunziza S (2010) Robust inference strategy in the presence of measurements error. Stat Probab Lett 80:726–732

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsch W, Chang RC, Zlatkis A (1974) The determination of organic volatiles in air pollution studies: characterization of proles. J Chromatogr Sci 12(4):175–182

    Article  Google Scholar 

  • Chen F, Nkurunziza S (2015) Optimal method in multiple regression with structural changes. Bernoulli 21(4):2217–2241

    Article  MathSciNet  MATH  Google Scholar 

  • Chen F, Nkurunziza S (2016) A class of Stein-rules in multivariate regression model with structural changes. Scand J Stat 43:83–102

    Article  MathSciNet  MATH  Google Scholar 

  • Chen F, Nkurunziza S (2017) On estimation of the change-points in multivariate regression models with structural changes. Commun Stat-Theory Methods 46(14):7157–7173

    Article  MathSciNet  MATH  Google Scholar 

  • Dolby GR (1976) The ultrastructural relation: a synthesis of the functional and structural relations. Biometrika 63(1):39–50

    Article  MathSciNet  MATH  Google Scholar 

  • Fuller WA (2009) Measurement error models. Wiley, New York

  • Izenman AJ (2008) Modern multivariate statistical techniques: regression, classification and manifold learning. Springer, New York

    Book  MATH  Google Scholar 

  • Jain K, Singh S, Sharma S (2011) Restricted estimation in multivariate measurement error regression model. J Multivar Anal 102(2):264–280

    Article  MathSciNet  MATH  Google Scholar 

  • Mardia KV, Kent JT, Bibby JM (1980) Multivariate analysis, 1st edn. Academic press, New York

    MATH  Google Scholar 

  • McArdle BH (1988) The structural relationship: regression in biology. Can J Zool 66(11):2329–2339

    Article  Google Scholar 

  • Nkurunziza S (2012) Constrained estimation and some useful results in several multivariate models. Stat Methodol 9(3):353–363

    Article  MathSciNet  MATH  Google Scholar 

  • Nkurunziza S (2012) Shrinkage strategies in some multiple multi-factor dynamical systems. ESAIM: Probab Stat 16:139–150

    Article  MathSciNet  MATH  Google Scholar 

  • Nkurunziza S, Yu Y (2017) On the joint asymptotic distribution of the restricted estimators in multivariate regression model. Technical report, arXiv:1706.06632

  • Saleh AK, Md E (2006) Theory of preliminary test and stein-type estimation with applications, vol 517. Wiley, New York

    Book  MATH  Google Scholar 

  • Stevens JP (2012) Applied multivariate statistics for the social sciences. Routledge, Milton Park

    Book  MATH  Google Scholar 

  • Yu Y (2016) Constrained estimation in multivariate measurement error models. M.Sc. Major Paper, Department of Mathematics and Statistics, University of Windsor

Download references

Acknowledgements

We would like to thank the referees and Associate Editor for helpful comments. Further, Dr. S. Nkurunziza would like to acknowledge the financial support received from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sévérien Nkurunziza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The sentence “From the above class of objective function, one obtains a class of restricted estimators \(\{{\tilde{B}}(\hat{{\varvec{\Sigma }}}): \hat{{\varvec{\Sigma }}} \in {\mathcal {P}mulations for the case whe}_{p\times p}\}\) which satisfies ...” is corrected as “From the above class of objective function, one obtains a class of restricted estimators \(\{{\tilde{B}}(\hat{{\varvec{\Sigma }}}): \hat{{\varvec{\Sigma }}} \in {\mathcal {P}}_{p\times p}\}\) which satisfies ....

Appendix: Some technical results

Appendix: Some technical results

In this appendix, we give technical results and proofs which are underlying the established results. The following lemma are useful in establishing the asymptotic distributions. Let

$$\begin{aligned}&\text {Cov}\left( {\varvec{U}},{\varvec{V}}\right) =\text {E}\left[ \left( {\text {vec}}({\varvec{U}})-\text {E}\left( {\text {vec}}({\varvec{U}})\right) \right) \left( {\text {vec}}({\varvec{V}})-\text {E}\left( {\text {vec}}({\varvec{V}})\right) ^{\prime }\right) \right] \mathrm{{and}} \,\,\, \mathrm{{let}} \\&\text {Cov}\left( {\varvec{U}}\right) =\text {E}\left[ \left( {\text {vec}}({\varvec{U}})-\text {E}\left( {\text {vec}}({\varvec{U}})\right) \right) \left( {\text {vec}}({\varvec{U}})-\text {E}\left( {\text {vec}}({\varvec{U}})\right) ^{\prime }\right) \right] \mathrm{{i.e.}}\\&\text {Cov}\left( {\varvec{U}}\right) =\text {Cov}\left( {\varvec{U}},{\varvec{U}}\right) . \end{aligned}$$

Lemma A.1

Let \({\varvec{w}}_{1},{\varvec{w}}_{2},\dots ,{\varvec{w}}_{n}\) be iid p- column random vectors with \(\text {E}\left( {\varvec{w}}_{1}\right) ={\varvec{0}}\) and

\({\text {Cov}}\left( {\varvec{w}}_{1}\right) ={\varvec{\Omega }}_{0}\) and let \(\left\{ {\varvec{U}}_{n}\right\} _{n=1}^{\infty }\) be a \(p_{0}\times p\)-sequence of nonrandom matrices such that \(\displaystyle {\lim _{n\rightarrow \infty }}{\varvec{U}}_{n}\) exists and non null. Then \(\displaystyle n^{-1/2}\sum _{i=1}^{n}{\varvec{U}}_{i}{\varvec{w}}_{i}\xrightarrow [n\rightarrow \infty ]{d}{\varvec{Z}}_{0}\sim {\mathcal {N}}_{p}\left( {{\varvec{0}}},{\varvec{\Omega }}\right) \) where

$$\begin{aligned} {\varvec{\Omega }}=\lim _{n\rightarrow \infty } {\text {Cov}}\left[ \left( n^{-1/2}\sum _{i=1}^{n}{\varvec{U}}_{i}{\varvec{w}}_{i}\right) \right] . \end{aligned}$$

Proof

Let \({\varvec{\alpha }}\) be a \(p_{0}\)-column vector (no zero vector) and let \(s_{n}^{2}{=}\displaystyle \sum _{i=1}^{n}{{\text {Cov}}}\left[ {\varvec{\alpha }}^{\prime }n^{-1/2}{\varvec{U}}_{i}{\varvec{w}}_{i}\right] \). This gives \(s_{n}^{2} =n^{-1}\displaystyle \sum _{i=1}^{n}{\varvec{\alpha }}^{\prime }{\varvec{U}}_{i}{\varvec{\Omega }}_{0}{\varvec{U}}^{\prime }_{i}{\varvec{\alpha }}\). By Cesàro mean theorem, we conclude that

\(\displaystyle {\lim _{n\rightarrow \infty }} {\text {Cov}}\left[ \left( n^{-1/2}\sum _{i=1}^{n}{\varvec{U}}_{i}{\varvec{w}}_{i}\right) \right] \) exists. Letting \({\varvec{\Omega }}\) this limit, we get \(\displaystyle {\lim _{n\rightarrow \infty }}s_{n}^{2}={\varvec{\alpha }}^{\prime }{\varvec{\Omega }}{\varvec{\alpha }}\) and

$$\begin{aligned}&\displaystyle \lim _{n\rightarrow \infty }\left( \max _{1\le k\le n}{\text {Cov}}\left[ {\varvec{\alpha }}^{\prime } n^{-1/2}{\varvec{U}}_{k}{\varvec{w}}_{k}\right] \Big /s_{n}^{2}\right) \\&\quad =\displaystyle \lim _{n\rightarrow \infty }\left( \max _{1\le k\leqslant n}{\text {Cov}}\left[ {\varvec{\alpha }}^{\prime } n^{-1/2}{\varvec{U}}_{k}{\varvec{\Omega }}_{0}{\varvec{U}}^{\prime }_{k}{\varvec{\alpha }}\right] \Big /s_{n}^{2}\right) =0, \end{aligned}$$

for all \({\varvec{\alpha }}\in {\mathbb {R}}^{p_{0}}\setminus \{0\}\). Hence, by Lindeberg central limit theorem, we get

$$\begin{aligned} n^{-1/2}{\varvec{\alpha }}^{\prime }\displaystyle {\sum _{i=1}^{n}}{\varvec{U}}_{i}{\varvec{w}}_{i}/s_{n}\xrightarrow [n\rightarrow \infty ]{d}Z_{0}^{*} \end{aligned}$$

where \(Z_{0}^{*}\sim {\mathcal {N}}\left( 0,\,1\right) \). Then, by Slutsky’s theorem, \(n^{-1/2}{\varvec{\alpha }}^{\prime }\displaystyle {\sum \nolimits _{i=1}^{n}}{\varvec{U}}_{i}{\varvec{w}}_{i}\xrightarrow [n\rightarrow \infty ]{d} \left( {\varvec{\alpha }}^{\prime }{\varvec{\Omega }}{\varvec{\alpha }}\right) ^{1/2}Z_{0}^{*}\) and note that \(\left( {\varvec{\alpha }}^{\prime }{\varvec{\Omega }}{\varvec{\alpha }}\right) ^{1/2}Z_{0}^{*}\sim {\mathcal {N}}\left( 0,{\varvec{\alpha }}^{\prime }{\varvec{\Omega }}{\varvec{\alpha }}\right) \) this is distributed as \({\varvec{\alpha }}^{\prime }{\varvec{Z}}_{0}\), where \({\varvec{Z}}_{0}\sim {\mathcal {N}}_{p_{0}}\left( {\varvec{0}},{\varvec{\Omega }}\right) \). This completes the proof. \(\square \)

It should be noticed that for the special case where \(p_{0}=p\) and \({\varvec{U}}_{i}={\varvec{I}}_{p_{0}}\), the above Lemma A.1 becomes the classical multivariate central limit theorem. From Lemma A.1, we establish the following lemma which is useful in establishing Theorem 3.2. Let \({\varvec{\Sigma }}_{E}\) be the variance-covariance matrix of each row of \({\varvec{E}}\) i.e \({\varvec{\Sigma }}_{E}={\text {Cov}}\left( {\varvec{e}}_{(i)}\right) \) with \({\varvec{E}}=\left( {{\varvec{e}}}_{(1)},{{\varvec{e}}}_{(2)},\dots ,{{\varvec{e}}}_{(n)}\right) ^{\prime }\),

\({\varvec{\Lambda }}_{\psi }=\text {E}\left( ({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)})\otimes ({{\varvec{\psi }}}_{(1)} {{\varvec{\psi }}}^{\prime }_{(1)})\right) \) and let \({\varvec{\Lambda }}_{\delta }=\text {E}\left( ({{\varvec{\delta }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)})\otimes ({{\varvec{\delta }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)})\right) \).

Lemma A.2

Suppose that Assumption 1 holds. Then,

$$\begin{aligned} \begin{aligned}&(1)\quad n^{-\frac{1}{2}}{\varvec{\Psi }}^{\prime }{\varvec{\Psi }}-n^{\frac{1}{2}}\sigma _\psi ^2{\varvec{I}}_{p} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_1\sim \mathcal {MN}_{p\times p} ({\varvec{0}}_{p\times p},{\varvec{\Lambda }}_\psi -\sigma _\psi ^4{\text {vec}} ({\varvec{I}}_{p})({\text {vec}}({\varvec{I}}_{p}))^{\prime });\\&(2)\quad n^{-\frac{1}{2}}{\varvec{\Delta }}^{\prime }{\varvec{\Delta }}-n^{\frac{1}{2}}\sigma _\delta ^2{\varvec{I}}_{p} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_2\sim \mathcal {MN}_{p\times p} ({\varvec{0}}_{p\times p},{\varvec{\Lambda }}_\delta -\sigma _\delta ^4{\text {vec}}({\varvec{I}}_{p}) ({\text {vec}}({\varvec{I}}_{p}))^{\prime });\\&(3)\quad n^{-\frac{1}{2}}{\varvec{M}}^{\prime }{\varvec{E}} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_3\sim \mathcal {MN}_{p\times q}\left( {\varvec{0}}_{p\times q},({\varvec{\sigma }}_{\scriptscriptstyle M} {\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M})\otimes {\varvec{\Sigma }}_{\scriptscriptstyle E}\right) ;\\&(4)\quad n^{-\frac{1}{2}}{\varvec{M}}^{\prime }{\varvec{\Psi }} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_4\sim \mathcal {MN}_{p\times p}\left( {\varvec{0}}_{p\times p},\sigma _\psi ^2 (({\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M})\otimes {\varvec{I}}_{p})\right) ;\\&(5)\quad n^{-\frac{1}{2}}{\varvec{M}}^{\prime }{\varvec{\Delta }} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_5\sim \mathcal {MN}_{p\times p}\left( {\varvec{0}}_{p\times p},\sigma _\delta ^2 (({\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M})\otimes {\varvec{I}}_{p})\right) ;\\&(6)\quad n^{-\frac{1}{2}}{\varvec{\Psi }}^{\prime }{\varvec{\Delta }} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_6\sim \mathcal {MN}_{p\times p}\left( {\varvec{0}}_{p\times p},\sigma _\psi ^2\sigma _\delta ^2 {\varvec{I}}_{p^2}\right) ;\\&(7)\quad n^{-\frac{1}{2}}{\varvec{\Psi }}^{\prime }{\varvec{E}} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_7\sim \mathcal {MN}_{p\times q}\left( {\varvec{0}}_{p\times q},\sigma _\psi ^2({\varvec{I}}_{p}\otimes {\varvec{\Sigma }}_{\scriptscriptstyle E})\right) ;\\&(8)\quad n^{-\frac{1}{2}}{\varvec{\Delta }}^{\prime }{\varvec{E}} \xrightarrow [n\rightarrow \infty ]{d} {\varvec{W}}_8\sim \mathcal {MN}_{p\times q}\left( {\varvec{0}}_{p\times q},\sigma _\delta ^2({\varvec{I}}_{p}\otimes {\varvec{\Sigma }}_{\scriptscriptstyle E})\right) . \end{aligned} \end{aligned}$$

Proof

Parts (1) and (2): We have

\(n^{-\frac{1}{2}}{\varvec{\Psi }}^{\prime }{\varvec{\Psi }}-\sigma _\psi ^2{\text {vec}}({\varvec{I}}_{p})= n^{-\frac{1}{2}}\sum \limits _{i=1}^n({{\varvec{\psi }}}_{(i)}{{\varvec{\psi }}^{\prime }}_{(i)} -\sigma _\psi ^2{\varvec{I}}_{p})\) with \(\text {E}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}-\sigma _\psi ^2{\varvec{I}}_{p} \right) =0\) and

$$\begin{aligned}&\text {E}\left( ({\text {vec}}({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}) -\sigma _\psi ^2{\text {vec}}({\varvec{I}}_{p})) \left( {\text {vec}}({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}) -\sigma _\psi ^2{\text {vec}}({\varvec{I}}_{p})\right) ^{\prime }\right) \\&=\text {E}\left( {\text {vec}}({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}) \left( {\text {vec}}({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)})\right) ^{\prime }\right) -\sigma _{\psi }^{4}{\text {vec}}({\varvec{I}}_{p})\left( {\text {vec}}({\varvec{I}}_{p}) \right) ^{\prime }\\&=\text {E}\left( ({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}) \otimes ({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)})\right) -\sigma _{\psi }^{4} {\text {vec}}({\varvec{I}}_{p})\left( {\text {vec}}({\varvec{I}}_{p})\right) ^{\prime } ={\varvec{\Lambda }}_{\psi }-\sigma _{\psi }^{4}{\text {vec}}({\varvec{I}}_{p}) \left( {\text {vec}}({\varvec{I}}_{p})\right) ^{\prime } \end{aligned}$$

where \({\varvec{\Lambda }}_{\psi }=\text {E}\left( ({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)}) \otimes ({{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)})\right) \). Then, Part (1) follows from Lemma A.1. The proof of Part (2) is similar.

Parts (3)–(5): We have \(n^{-\frac{1}{2}}{\varvec{M}}^{\prime }{\varvec{E}}=n^{-\frac{1}{2}}\sum \limits _{i=1}^n{{\varvec{m}}}_{(i)} {\varvec{e}}^{\prime }_{(i)}\) where \({\varvec{E}}=\left[ {{\varvec{e}}}_{(1)}, {{\varvec{e}}}_{(2)}, \cdots , {{\varvec{e}}}_{(n)}\right] ^{\prime }\) with \({{\varvec{e}}}_{(i)}=(\epsilon _{i1},\epsilon _{i2},\cdots ,\epsilon _{iq})^{\prime }\). Then, the proof of Part (3)follows by combining the conditions \(({\mathcal {A}}_{1})\) and \(({\mathcal {A}}_{4})\) of Assumption 1 along with Lemma A.1. The proof of Parts (4)-(5) are established in the similar way.

Parts (6)-(8): We have \(n^{-\frac{1}{2}}{\varvec{\Psi }}^{\prime }{\varvec{\Delta }}=n^{-\frac{1}{2}}\sum \limits _{i=1}^n{{\varvec{\psi }}}_{(i)}{{\varvec{\delta }}^{\prime }}_{(i)}\) where \({{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\), \({{\varvec{\psi }}}_{(2)}{{\varvec{\delta }}}^{\prime }_{(2)}\), ...,\({{\varvec{\psi }}}_{(n)}{{\varvec{\delta }}}^{\prime }_{(n)}\) are iid with \(\text {E}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right) ={\varvec{0}}\) and \({\text {Cov}}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right) =\text {E}\left[ {\text {vec}}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)} \right) \left( {\text {vec}}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right) \right) ^{\prime } \right] \). Then

$$\begin{aligned} {\text {Cov}}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right)&=\text {E}\left[ \left( {{\varvec{\psi }}}_{(1)}\otimes {\varvec{I}}_{p}\right) {{\varvec{\delta }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\left( {{\varvec{\psi }}}^{\prime }_{(1)}\otimes {\varvec{I}}_{p}\right) \right] \\ \quad { }&=\text {E}\left\{ \left( {{\varvec{\psi }}}_{(1)}\otimes {\varvec{I}}_{p}\right) \text {E}\left[ {{\varvec{\delta }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\Big |{{\varvec{\psi }}}_{(1)}\right] \left( {{\varvec{\psi }}}^{\prime }_{(1)}\otimes {\varvec{I}}_{p}\right) \right\} . \end{aligned}$$

Then, since \({{\varvec{\delta }}}_{(1)}\) and \({{\varvec{\psi }}}_{(1)}\) are independent, we get

$$\begin{aligned}&{\text {Cov}}\left( {{\varvec{\psi }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right) =\text {E}\left\{ \left( {{\varvec{\psi }}}_{(1)}\otimes {\varvec{I}}_{p}\right) \text {E}\left[ {{\varvec{\delta }}}_{(1)}{{\varvec{\delta }}}^{\prime }_{(1)}\right] \left( {{\varvec{\psi }}}^{\prime }_{(1)}\otimes {\varvec{I}}_{p}\right) \right\} \\&\quad =\sigma ^{2}_{\delta }\text {E}\left\{ \left( {{\varvec{\psi }}}_{(1)}{{\varvec{\psi }}}^{\prime }_{(1)} \otimes {\varvec{I}}_{p}\right) \right\} =\sigma ^{2}_{\delta }\sigma ^{2}_{\psi }{\varvec{I}}_{p^{2}}, \end{aligned}$$

and then, Part (6) follows from Lemma A.1. Parts (7) and (8) are established in the similar way. \(\square \)

Lemma A.3

Let Y be a \(p\times q\) random matrix and \({\varvec{Y}}\sim \mathcal {MN}_{p\times q}({\varvec{0}}_{\scriptscriptstyle p\times q},{\varvec{\Lambda }})\), with \({\varvec{\Lambda }}\) a \(pq\times pq\) matrix. For \(j=1,2, \dots , m\), let \(\kappa _{j}\) and \(\alpha _{j}\) be \(q\times q-\) nonrandom matrices, let \(\iota _{j}\) and \(\beta _{j}\) be \(p\times p\)-nonrandom matrices, and let \(\varrho _{j}\) be \(p\times q\)-nonrandom matrices. Then

\( \left( \begin{array}{ccc} \iota _{1}{\varvec{Y}}\kappa _{1}+\beta _1{\varvec{Y}}\alpha _1+\varrho _1\\ \iota _{2}{\varvec{Y}}\kappa _{2}+\beta _2{\varvec{Y}}\alpha _2+\varrho _2\\ \vdots \\ \iota _{m}{\varvec{Y}}\kappa _{m}+\beta _m {\varvec{Y}}\alpha _m+\varrho _m \end{array} \right) \) \(\sim \mathcal {MN}_{mp\times q}\) \( \left( \left( \begin{array}{c} \varrho _1 \\ \varrho _2 \\ \vdots \\ \varrho _{m} \end{array} \right) , \left( \begin{array}{cccc} {\varvec{A}}_{11} &{} {\varvec{A}}_{12}&{}\cdots &{} {\varvec{A}}_{1m} \\ {\varvec{A}}_{21} &{} {\varvec{A}}_{22}&{} \cdots &{} {\varvec{A}}_{2m}\\ \vdots &{} \cdots &{} \cdots &{} \vdots \\ {\varvec{A}}_{m1} &{} {\varvec{A}}_{m2}&{} \cdots &{} {\varvec{A}}_{mm} \end{array} \right) \right) ,\) where \( \quad { } {\varvec{A}}_{ji}=({\varvec{A}}_{ij})^{\prime }, i,j=1,2,\dots ,m,\) and

$$\begin{aligned} {\varvec{A}}_{ij}&=(\kappa ^{\prime }_{i}\otimes \iota _{i})\Lambda (\kappa _{j}\otimes \iota ^{\prime }_{j}) +(\kappa ^{\prime }_{i}\otimes \iota _{i})\Lambda (\alpha _j\otimes \beta ^{\prime }_j) +(\alpha ^{\prime }_i\otimes \beta _i){\varvec{\Lambda }}(\kappa _{j}\otimes \iota ^{\prime }_{j}) \nonumber \\&\quad +(\alpha ^{\prime }_i\otimes \beta ^{}_i)\Lambda (\alpha _j\otimes \beta ^{\prime }_j). \end{aligned}$$

Proof

We have vec\( \left( \left( \begin{array}{ccc} \iota _{1}{\varvec{Y}}\kappa _{1}+\beta _1{\varvec{Y}}\alpha _1+\varrho _1\\ \iota _{2}{\varvec{Y}}\kappa _{2}+\beta _2{\varvec{Y}}\alpha _2+\varrho _2\\ \vdots \\ \iota _{m}{\varvec{Y}}\kappa _{m}+\beta _m {\varvec{Y}}\alpha _m+\varrho _m \end{array} \right) \right) {=} \left( \begin{array}{c} \kappa ^{\prime }_{1}\otimes \iota _{1}+\alpha ^{\prime }_1\otimes \beta _1\\ \kappa ^{\prime }_{2}\otimes \iota _{2}+\alpha ^{\prime }_2\otimes \beta _2\\ \vdots \\ \kappa ^{\prime }_{m}\otimes \iota _{m}+\alpha ^{\prime }_m\otimes \beta _m \end{array} \right) {\text {vec}}({\varvec{Y}}) +\left( \begin{array}{c} {\text {vec}}(\varrho _1)\\ {\text {vec}}(\varrho _2)\\ \vdots \\ {\text {vec}}(\varrho _m) \end{array} \right) \) then the rest of the proof follows from the properties of normal random vectors along with some algebraic computations, this completes the proof. \(\square \)

Note that this result is more general than Corollary A.2 in Chen and Nkurunziza (2016). By using this lemma, we establish the following lemma, which is more general than Proposition A.10 and Corollary A.2 in Chen and Nkurunziza (2016). The established lemma is particularly useful in deriving the joint asymptotic normality between \(\hat{{\varvec{B}}}_1\), \(\hat{{\varvec{B}}}_2\),\(\hat{{\varvec{B}}}_3\) and \(\hat{{\varvec{B}}}_4\).

Lemma A.4

For \(j=1,2,\dots ,m\), let \(\{\kappa _{jn}\}_{n=1}^{\infty }\), \(\{\iota _{jn}\}_{n=1}^{\infty }\) \(\{\alpha _{jn}\}_{n=1}^{\infty }\),\(\{\beta _{jn}\}_{n=1}^{\infty }\), \(\{\varrho _{jn}\}_{n=1}^{\infty }\), be sequences of random matrices such that \(\kappa _{jn}\xrightarrow [n\rightarrow \infty ]{P}\kappa _{j}\), \(\iota _{jn}\xrightarrow [n\rightarrow \infty ]{P}\iota _{j}\), \(\alpha _{jn}\xrightarrow [n\rightarrow \infty ]{P}\alpha _j\), \(\beta _{jn}\xrightarrow [n\rightarrow \infty ]{P}\beta _j\), \(\varrho _{jn}\xrightarrow [n\rightarrow \infty ]{P}\varrho _j\), where, for \(j=1,2,\dots , m\), \(\kappa _j\), \(\alpha _j\), \(\iota _j\) and \(\beta _j\),\(\varrho _j\), are non-random matrices as defined in Lemma A.3. If a sequence of \(p\times q\) random matrices \(\{{\varvec{Y}}_n\}_{n=1}^{\infty }\) is such that \({\varvec{Y}}_n\xrightarrow [n\rightarrow \infty ]{d}{\varvec{Y}}\sim \mathcal {MN}_{p\times q}({\varvec{0}}_{\scriptscriptstyle p\times q},\Lambda )\), where \({\varvec{\Lambda }}\) is a \(pq\times pq\) matrix. We have

\( \left( \begin{array}{ccc} \iota _{1n} {\varvec{Y}}_n\kappa _{1n}+\beta _{1n}{\varvec{Y}}_n\alpha _{1n}+\varrho _{1n}\\ \iota _{2n}{\varvec{Y}}_n\kappa _{2n}+\beta _{2n}{\varvec{Y}}_n\alpha _{2n}+\varrho _{2n}\\ \vdots \\ \iota _{mn}{\varvec{Y}}_n\kappa _{mn}+\beta _{mn}{\varvec{Y}}_n\alpha _{mn}+\varrho _{mn} \end{array} \right) \xrightarrow [n\rightarrow \infty ]{d} {\varvec{U}}\sim \mathcal {MN}_{mp\times q} \left( {\varvec{\varrho }},\,{\varvec{A}} \right) \)

with \({\varvec{\varrho }}= \left( \begin{array}{c} \varrho _1 \\ \varrho _2 \\ \vdots \\ \varrho _m \end{array} \right) ,\)  \({\varvec{A}}= \left( \begin{array}{c c c c} {\varvec{A}}_{11} &{} {\varvec{A}}_{12}&{} \cdots &{} {\varvec{A}}_{1m}\\ {\varvec{A}}_{21} &{} {\varvec{A}}_{22}&{} \cdots &{} {\varvec{A}}_{2m}\\ \vdots &{} \cdots &{} \cdots &{} \vdots \\ {\varvec{A}}_{m1} &{} {\varvec{A}}_{m2}&{} \cdots &{} {\varvec{A}}_{mm} \end{array} \right) \),

where \({\varvec{A}}_{ij}\), \(i=1,2, \dots , m; j=1,2, \dots , m\) are as defined in Lemma A.3.

Proof

We have

$$\begin{aligned}&\left( \begin{array}{c} {\text {vec}}(\iota _{1n} {\varvec{Y}}_n\kappa _{1n}+\beta _{1n}{\varvec{Y}}_n\alpha _{1n} +\varrho _{1n})\\ {\text {vec}}(\iota _{2n} {\varvec{Y}}_n\kappa _{2n}+\beta _{2n}{\varvec{Y}}_n\alpha _{2n} +\varrho _{2n})\\ \vdots \\ {\text {vec}}(\iota _{mn} {\varvec{Y}}_n\kappa _{mn}+\beta _{mn}{\varvec{Y}}_n\alpha _{mn}+\varrho _{mn}) \end{array} \right) = \left( \begin{array}{c} \kappa ^{\prime }_{1n}\otimes \iota _{1n}+\alpha ^{\prime }_{1n}\otimes \beta _{1n}\\ \kappa ^{\prime }_{2n}\otimes \iota _{2n}+\alpha ^{\prime }_{2n}\otimes \beta _{2n}\\ \vdots \\ \kappa ^{\prime }_{mn}\otimes \iota _{mn}+\alpha ^{\prime }_{mn}\otimes \beta _{mn} \end{array} \right) {\text {vec}}({\varvec{Y}}_n)\\&+ \left( \begin{array}{c} {\text {vec}}(\varrho _{1n})\\ {\text {vec}}(\varrho _{2n})\\ \vdots \\ {\text {vec}}(\varrho _{mn}) \end{array} \right) , \end{aligned}$$

where \({\text {vec}}({\varvec{Y}}_n)\xrightarrow [n\rightarrow \infty ]{d}{\text {vec}}({\varvec{Y}})\sim {\mathcal {N}}_{pq}(0,{\varvec{\Lambda }})\), \(\left( \begin{array}{c} {\text {vec}}(\varrho _{1n})\\ {\text {vec}}(\varrho _{2n})\\ \vdots \\ {\text {vec}}(\varrho _{mn}) \end{array} \right) \xrightarrow [n\rightarrow \infty ]{P}\left( \begin{array}{c} {\text {vec}}(\varrho _{1})\\ {\text {vec}}(\varrho _2)\\ \vdots \\ {\text {vec}}(\varrho _{m}) \end{array} \right) , \)

and \(\left( \begin{array}{c} \kappa ^{\prime }_{1n}\otimes \iota _{1n}+\alpha ^{\prime }_{1n}\otimes \beta _{1n}\\ \kappa ^{\prime }_{2n}\otimes \iota _{2n}+\alpha ^{\prime }_{2n}\otimes \beta _{2n}\\ \vdots \\ \kappa ^{\prime }_{mn}\otimes \iota _{mn}+\alpha ^{\prime }_{mn}\otimes \beta _{mn} \end{array} \right) \xrightarrow [n\rightarrow \infty ]{P} \left( \begin{array}{c} \kappa ^{\prime }_{1}\otimes \iota _{1}+\alpha ^{\prime }_1\otimes \beta _1\\ \kappa ^{\prime }_{2}\otimes \iota _{2}+\alpha ^{\prime }_2\otimes \beta _2\\ \vdots \\ \kappa ^{\prime }_{m}\otimes \iota _{m}+\alpha ^{\prime }_m\otimes \beta _m \end{array} \right) .\)

Then, by using Slutsky’s theorem, we have

$$\begin{aligned} {vec} \left( \begin{array}{ccc} \iota _{1n} {\varvec{Y}}_n\kappa _{1n}+\beta _{1n}{\varvec{Y}}_n\alpha _{1n}+\varrho _{1n}\\ \iota _{2n}{\varvec{Y}}_n\kappa _{2n}+\beta _{2n}{\varvec{Y}}_n\alpha _{2n}+\varrho _{2n}\\ \vdots \\ \iota _{mn}{\varvec{Y}}_n\kappa _{mn}+\beta _{mn}{\varvec{Y}}_n\alpha _{mn}+\varrho _{mn} \end{array} \right) \xrightarrow [n\rightarrow \infty ]{d}{\text {vec}} \left( \begin{array}{ccc} \iota _{1} {\varvec{Y}}\kappa _{1}+\beta _{1}{\varvec{Y}}\alpha _{1}+\varrho _{1}\\ \iota _{2}{\varvec{Y}}\kappa _{2}+\beta _{2}{\varvec{Y}}\alpha _{2}+\varrho _{2}\\ \vdots \\ \iota _{m}{\varvec{Y}}\kappa _{m}+\beta _{m}{\varvec{Y}}\alpha _{m}+\varrho _{m} \end{array} \right) \end{aligned}$$

and then

$$\begin{aligned} \left( \begin{array}{ccc} \iota _{1n} {\varvec{Y}}_n\kappa _{1n}+\beta _{1n}{\varvec{Y}}_n\alpha _{1n}+\varrho _{1n}\\ \iota _{2n}{\varvec{Y}}_n\kappa _{2n}+\beta _{2n}{\varvec{Y}}_n\alpha _{2n}+\varrho _{2n}\\ \vdots \\ \iota _{mn}{\varvec{Y}}_n\kappa _{mn}+\beta _{mn}{\varvec{Y}}_n\alpha _{mn}+\varrho _{mn} \end{array} \right) \xrightarrow [n\rightarrow \infty ]{d} \left( \begin{array}{ccc} \iota _{1} {\varvec{Y}}\kappa _{1}+\beta _{1}{\varvec{Y}}\alpha _{1}+\varrho _{1}\\ \iota _{2}{\varvec{Y}}\kappa _{2}+\beta _{2}{\varvec{Y}}\alpha _{2}+\varrho _{2}\\ \vdots \\ \iota _{m}{\varvec{Y}}\kappa _{m}+\beta _{m}{\varvec{Y}}\alpha _{m}+\varrho _{m} \end{array} \right) \equiv {\varvec{U}}. \end{aligned}$$

Then, the proof follows directly from Lemma A.3. \(\square \)

From this lemma, we establish the following corollary.

Corollary A.1

Suppose that the conditions Lemma A.4 hold. We have \(({\varvec{Y}}^{\prime }_n,({\varvec{Y}}_n+\beta _{2n}{\varvec{Y}}_n\alpha _{2n}+\varrho _{2n})^{\prime })^{\prime }\xrightarrow [n\rightarrow \infty ]{d}({\varvec{Y}}^{\prime },({\varvec{Y}}+\beta _{2} {\varvec{Y}}\alpha _{2}+\varrho _{2})^{\prime })^{\prime }\), with

$$\begin{aligned} \left( \begin{array}{ccc} {\varvec{Y}}\\ {\varvec{Y}}+\beta _{2} {\varvec{Y}}\alpha _{2}+\varrho _{2} \end{array} \right) \sim \mathcal {MN}_{2p\times q} \left( \left( \begin{array}{c} {\varvec{0}}_{\scriptscriptstyle p\times q} \\ \varrho _{2} \end{array} \right) , \left( \begin{array}{c c} {\varvec{V}}_{11} &{} {\varvec{V}}_{12} \\ {\varvec{V}}_{21} &{} {\varvec{V}}_{22} \end{array} \right) \right) \end{aligned}$$

where \({\varvec{V}}_{11}={\varvec{\Lambda }}\);    \({\varvec{V}}_{12}={\varvec{\Lambda }}+{\varvec{\Lambda }} (\alpha ^{\prime }_{2}\otimes \beta _{2})\);    \({\varvec{V}}_{21}=({\varvec{V}}_{12})^{\prime }\);

\({\varvec{V}}_{22}=({\varvec{I}}_{pq}+\alpha ^{\prime }_{2}\otimes \beta _{2}){\varvec{\Lambda }}({\varvec{I}}_{pq}+\alpha ^{\prime }_{2}\otimes \beta _{2}).\)

The proof follows directly from Lemma A.4 by taking \(m=2\), \(\kappa _{jn}={\varvec{I}}_{q}\), \(\iota _{jn}={\varvec{I}}_{p}\), \(\alpha _{1n}={\varvec{0}}\), \(\beta _{1n}={\varvec{0}}\) and \(\varrho _{1n}={\varvec{0}}\).

Proof of Theorem 3.2

We have

$$\begin{aligned}&(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}})=(\hat{{\varvec{B}}}_1-{\varvec{B}}) +\hat{{\varvec{\Sigma }}}^{-1}{{\varvec{R}}^{\prime }_1}[{\varvec{R}}_{1}\hat{{\varvec{\Sigma }}}^{-1} {{\varvec{R}}^{\prime }_1}]^{-1} ({\varvec{\theta }}-{\varvec{R}}_{1}\hat{{\varvec{B}}}_1{\varvec{R}}_{2})({{\varvec{R}}^{\prime }_{2}}{\varvec{R}}_{2})^{-1} {{\varvec{R}}^{\prime }_{2}}\\&\quad =(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}){\varvec{R}}_{1} \left( \hat{{\varvec{B}}}_1-{\varvec{B}}\right) {\varvec{R}}_{2}{\varvec{P}}_{n}+{\varvec{G}}_{2n} ({\hat{{\varvec{\Sigma }}}})({\varvec{\theta }}-{\varvec{R}}_{1}B_1{\varvec{R}}_{2}){\varvec{P}}_{n}. \end{aligned}$$

with \({\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}})=\hat{{\varvec{\Sigma }}}^{-1}{{\varvec{R}}^{\prime }_1}[{\varvec{R}}_{1} \hat{{\varvec{\Sigma }}}^{-1}{{\varvec{R}}^{\prime }_1}]^{-1}\) and \({\varvec{P}}_{n}=({{\varvec{R}}^{\prime }_{2}}{\varvec{R}}_{2})^{-1}{{\varvec{R}}^{\prime }_{2}}\). Then, since

\({\varvec{R}}_{1}{\varvec{B}}{\varvec{R}}_2={\varvec{\theta }}+{\varvec{\theta }}_{0}\big /\sqrt{n}\), this last relation gives

$$\begin{aligned} n^{\frac{1}{2}}(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}})=n^{\frac{1}{2}} (\hat{{\varvec{B}}}_1-{\varvec{B}})- {\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}){\varvec{R}}_{1}\left( n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1 -{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n}-{\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}})\theta _{0} {\varvec{P}}_{n}. \end{aligned}$$

Hence,

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}(\hat{{\varvec{B}}}_1-{\varvec{B}})\\ \sqrt{n}(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}}) \end{array} \right)&= \left( \begin{array}{c} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})\\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}) {\varvec{R}}_{1}\left( n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n} \end{array} \right) \\&\quad +\left( \begin{array}{c} {\varvec{0}}_{\scriptscriptstyle p\times q} \\ -{\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}){\varvec{\theta }}_{0}{\varvec{P}}_{n} \\ \end{array} \right) . \end{aligned}$$

Note that

$$\begin{aligned} {\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}})\xrightarrow [n\rightarrow \infty ]{P} {\varvec{G}}_2({\varvec{Q}}_{0}), \quad { } {\varvec{P}}_{n}\xrightarrow [n\rightarrow \infty ]{P}P \end{aligned}$$
(A.1)

with

$$\begin{aligned} {\varvec{G}}_2({\varvec{Q}}_{0})={\varvec{Q}}_{0}^{-1}{\varvec{R}}^{\prime }_1({\varvec{R}}_{1}{\varvec{Q}}_{0}^{-1} {\varvec{R}}^{\prime }_1)^{-1}, \quad { } \text{ and } \quad { } {\varvec{P}}=({{\varvec{R}}^{\prime }_{2}}{\varvec{R}}_{2})^{-1}{{\varvec{R}}^{\prime }_{2}}. \end{aligned}$$
(A.2)

Further, let \({\varvec{\beta }}_{2}={\varvec{G}}_2({\varvec{Q}}_{0}){\varvec{R}}_{1}\), let \({\varvec{\alpha }}_{2}={\varvec{R}}_{2}P\) and let \({\varvec{\varrho }}={\varvec{G}}_{2}({\varvec{Q}}_{0}){\varvec{\theta }}_{0}{\varvec{P}}\). By using Corollary A.1, we have

this completes the proof. \(\square \)

Proof of Theorem 3.1

The proof is similar to that of Theorem 3.2 by taking \({\varvec{\mu }}\left( {\varvec{Q}}_{0}\right) ={\varvec{0}}\). For the convenience of the reader, we also write the main steps here. We have

$$\begin{aligned} n^{\frac{1}{2}}(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}})=n^{\frac{1}{2}} (\hat{{\varvec{B}}}_1-{\varvec{B}})- {\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}){\varvec{R}}_{1}\left( n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1 -{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n}. \end{aligned}$$

Hence,

$$\begin{aligned} \left( \begin{array}{c} \sqrt{n}(\hat{{\varvec{B}}}_1-{\varvec{B}})\\ \sqrt{n}(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}}) \end{array} \right) = \left( \begin{array}{c} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})\\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{2n}({\hat{{\varvec{\Sigma }}}}) {\varvec{R}}_{1}\left( n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n} \end{array} \right) . \end{aligned}$$

Hence, by combining Corollary A.1 with relations (A.1) and (A.2), we get

$$\begin{aligned} \sqrt{n}\left( (\hat{{\varvec{B}}}_1-{\varvec{B}})^{\prime },\,(\hat{{\varvec{B}}}(\hat{{\varvec{\Sigma }}})-{\varvec{B}})^{\prime }\right) ^{\prime } \xrightarrow [n\rightarrow \infty ]{d} \left( {\varvec{Y}}^{\prime }, {\varvec{Y}}^{\prime }+{\varvec{\beta }}^{\prime }_{2} {\varvec{Y}}^{\prime }{\varvec{\alpha }}^{\prime }_{2}+{\varvec{\varrho }}^{\prime } \right) ^{\prime } \end{aligned}$$

where \({\varvec{\beta }}_{2}={\varvec{G}}_2({\varvec{Q}}_{0}){\varvec{R}}_{1}\), let \({\varvec{\alpha }}_{2}={\varvec{R}}_{2}P\) and let \({\varvec{\varrho }}={\varvec{0}}\). Then, we have

$$\begin{aligned} \left( \begin{array}{ccc} {\varvec{Y}}\\ {\varvec{Y}}+{\varvec{\beta }}_{2} {\varvec{Y}}{\varvec{\alpha }}_{2}+{\varvec{\varrho }} \end{array} \right) \sim \mathcal {MN}_{2p\times q} \left( {\varvec{0}}_{\scriptscriptstyle 2p\times q}, \left( \begin{array}{c c} {\varvec{\Sigma }}_{11} &{} {\varvec{\Sigma }}_{12}\left( {\varvec{Q}}_{0}\right) \\ {\varvec{\Sigma }}_{21}\left( {\varvec{Q}}_{0}\right) &{} {\varvec{\Sigma }}_{22}\left( {\varvec{Q}}_{0}\right) \end{array} \right) \right) , \end{aligned}$$

as desired result. \(\square \)

Proof of Theorem 3.3

From (2.7), (2.8) and (2.9), we have

$$\begin{aligned} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_2-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) -n^{\frac{1}{2}}{\varvec{G}}_{2n}{\varvec{R}}_{1}(\hat{{\varvec{B}}}_1-{\varvec{B}}){\varvec{R}}_{2}{\varvec{P}}_{n} +n^{\frac{1}{2}}{\varvec{G}}_{2n}(\theta -{\varvec{R}}_{1}{\varvec{B}}{\varvec{R}}_2){\varvec{P}}_{n}\\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_3-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) +n^{\frac{1}{2}}{\varvec{G}}_{3n}(\theta -{\varvec{R}}_{1}\hat{{\varvec{B}}}_1{\varvec{R}}_{2}){\varvec{P}}_{n} \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_4-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) -n^{\frac{1}{2}}{\varvec{G}}_{4n}{\varvec{R}}_{1}(\hat{{\varvec{B}}}_1-{\varvec{B}}){\varvec{R}}_{2}{\varvec{P}}_{n} +n^{\frac{1}{2}}{\varvec{G}}_{4n}(\theta -{\varvec{R}}_{1}{\varvec{B}}{\varvec{R}}_2){\varvec{P}}_{n}. \end{aligned}$$

with \({\varvec{G}}_{2n}{=}({\varvec{S}} {\varvec{K}}_{X})^{-1}{{\varvec{R}}^{\prime }_1}[{\varvec{R}}_{1}({\varvec{S}} {\varvec{K}}_{X})^{-1} {{\varvec{R}}^{\prime }_1}]^{-1}\),   \({\varvec{S}}{=}{\varvec{X}}^{\prime }{\varvec{X}}\), \({\varvec{G}}_{3n}{=}{\varvec{S}}^{-1} {{\varvec{R}}^{\prime }_1}[{\varvec{R}}_{1}{\varvec{S}}^{-1}{{\varvec{R}}^{\prime }_1}]^{-1}\),

\({\varvec{G}}_{4n}={{\varvec{R}}^{\prime }_1}[{\varvec{R}}_{1}{{\varvec{R}}^{\prime }_1}]^{-1}\),   \({\varvec{P}}_{n}=({\varvec{R}}_{2}^{\prime }{\varvec{R}}_{2})^{-1}{\varvec{R}}_{2}^{\prime }\). Then, since \({\varvec{R}}_{1}{\varvec{B}}{\varvec{R}}_2={\varvec{\theta }}+{\varvec{\theta }}_{0}/\sqrt{n}\), we have

$$\begin{aligned} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_2-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) -n^{\frac{1}{2}}{\varvec{G}}_{2n}{\varvec{R}}_{1}(\hat{{\varvec{B}}}_1-{\varvec{B}}){\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{2n}\theta _{0}{\varvec{P}}_{n}\\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_3-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) -n^{\frac{1}{2}}{\varvec{G}}_{3n}{\varvec{R}}_{1}(\hat{{\varvec{B}}}_1-{\varvec{B}}){\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{3n}\theta _{0}{\varvec{P}}_{n}. \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_4-{\varvec{B}})=n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) -n^{\frac{1}{2}}{\varvec{G}}_{4n}{\varvec{R}}_{1}(\hat{{\varvec{B}}}_1-{\varvec{B}}){\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{4n}\theta _{0}{\varvec{P}}_{n}. \end{aligned}$$

Therefore,

$$\begin{aligned} \left( \begin{array}{c} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_2-{\varvec{B}}) \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_3-{\varvec{B}}) \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_4-{\varvec{B}}) \\ \end{array} \right) =\left( \begin{array}{c} n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{2n}{\varvec{R}}_{1}\left( n^{\frac{1}{2}} (\hat{{\varvec{B}}}_1-{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{2n}\theta _{0}{\varvec{P}}_{n} \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{3n}{\varvec{R}}_{1}\left( n^{\frac{1}{2}} (\hat{{\varvec{B}}}_1-{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{3n}\theta _{0}{\varvec{P}}_{n} \\ n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})-{\varvec{G}}_{4n}{\varvec{R}}_{1}\left( n^{\frac{1}{2}} (\hat{{\varvec{B}}}_1-{\varvec{B}})\right) {\varvec{R}}_{2}{\varvec{P}}_{n} +{\varvec{G}}_{4n}\theta _{0}{\varvec{P}}_{n} \\ \end{array} \right) , \end{aligned}$$

with \(n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}}) \xrightarrow [n\rightarrow \infty ]{d}\eta _1\sim \mathcal {MN}_{p \times q}\left( {\varvec{O}}_{\scriptscriptstyle p\times q}, {\varvec{\Sigma }}_{11}\right) \),

\({\varvec{G}}_{2n} \xrightarrow [n\rightarrow \infty ]{P}{\varvec{G}}_{2}=({\varvec{\Sigma }} {\varvec{K}})^{-1}{\varvec{R}}^{\prime }_1({\varvec{R}}_{1}({\varvec{\Sigma }} {\varvec{K}})^{-1}{\varvec{R}}^{\prime }_1)^{-1}\), \({\varvec{G}}_{3n} \xrightarrow [n\rightarrow \infty ]{P}{\varvec{G}}_{3}={\varvec{\Sigma }}^{-1} {\varvec{R}}^{\prime }_1({\varvec{R}}_{1} {\varvec{\Sigma }}^{-1}{\varvec{R}}^{\prime }_1)^{-1}\), \({\varvec{G}}_{4n} \xrightarrow [n\rightarrow \infty ]{P}{\varvec{G}}_{4}={\varvec{R}}^{\prime }_1({\varvec{R}}_{1} {\varvec{R}}^{\prime }_1)^{-1}\), \({\varvec{P}}_{n} \xrightarrow [n\rightarrow \infty ]{P}{\varvec{P}}=({\varvec{R}}_{2}^{\prime }{\varvec{R}}_{2})^{-1} {\varvec{R}}_{2}^{\prime }\). Therefore, by using Lemma A.4, we get the statement of the proposition. \(\square \)

Proof of Theorem 3.4

The first statement follows from Theorem 3.2. Further, we have,

$$\begin{aligned}&\text {ADR}\left( \tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}),{\varvec{B}},{\varvec{W}}\right) =\text {trace}\left[ ({\varvec{W}}\otimes {\varvec{I}}_{q})\text {E}\left[ \text {vec} ({\varvec{\eta }}^{*})\left( \text {vec}({\varvec{\eta }}^{*})\right) ^{\prime }\right] \right] \\&\quad =\text {trace}(({\varvec{W}}\otimes {\varvec{I}}_{q}) ({\varvec{\Sigma }}_{22}({\varvec{Q}}_{0})))+\text {trace}\left( {\varvec{\mu }}^{\prime }({\varvec{Q}}_{0}) {\varvec{W}}{\varvec{\mu }}({\varvec{Q}}_{0})\right) . \end{aligned}$$

This gives

$$\begin{aligned}&\text {ADR}(\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}),{\varvec{B}},{\varvec{W}})=\text {ADR} (\hat{{\varvec{B}}}_1,{\varvec{B}};{\varvec{W}})-\text {trace}(({\varvec{W}}\otimes {\varvec{I}}_{q})({\varvec{A}}_1 {\varvec{\Lambda }}({\varvec{J}}^{\prime }_1({\varvec{Q}}_{0})\otimes {\varvec{J}}))\\&\quad -\text {trace}(({\varvec{W}}\otimes {\varvec{I}}_{q})(({\varvec{J}}_1({\varvec{Q}}_{0})\otimes {\varvec{J}}){\varvec{\Lambda }} {\varvec{A}}^{\prime }_{1})+\text {trace}(({\varvec{W}}\otimes {\varvec{I}}_{q}) (({\varvec{J}}_1({\varvec{Q}}_{0})\\&\quad \otimes {\varvec{J}}){\varvec{\Lambda }}({\varvec{J}}^{\prime }_1({\varvec{Q}}_{0})\otimes {\varvec{J}})))\\&\quad +\text {trace}(({\varvec{C}}_4{\varvec{C}}^{\prime }_4)\otimes ({\varvec{C}}^{\prime }_3({\varvec{Q}}_{0}){\varvec{W}} {\varvec{C}}_3({\varvec{Q}}_{0})){\text {vec}}({\varvec{\theta }}_0)({\text {vec}} ({\varvec{\theta }}_0))^{\prime }). \end{aligned}$$

Further, one can verify that \({\text {vec}}({\varvec{J}}_1({\varvec{Q}}_{0})\otimes {\varvec{J}})={\text {vec}}(({\varvec{\Sigma }} {\varvec{K}})^{-1}\otimes {\varvec{I}}_q)\). Then, the rest of the proof follows from some algebraic computations. \(\square \)

Proof of Theorem 3.5

From Theorem 3.4, we have

$$\begin{aligned} \text {ADR}(\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}),{\varvec{B}},{\varvec{W}}) =\text {ADR}(\hat{{\varvec{B}}}_1,{\varvec{B}},{\varvec{W}})-f_1({\varvec{Q}}_{0}) +({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}){\text {vec}} ({\varvec{\theta }}_0).\nonumber \\ \end{aligned}$$
(A.3)

Note that \(f_1({\varvec{Q}}_{0})\ge 0\) and obviously, if \(f_1({\varvec{Q}}_{0})=0\), ADR\((\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}), {\varvec{B}}; {\varvec{W}})>\)ADR\((\hat{{\varvec{B}}}_1, {\varvec{B}},{\varvec{W}})\) provided that \(({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}){\text {vec}} ({\varvec{\theta }}_0)>0\). Thus, we only consider the case where \(f_1({\varvec{Q}}_{0})>0\). From (A.3), ADR\((\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}), {\varvec{B}}; W)>\)ADR\((\hat{{\varvec{B}}}_1, {\varvec{B}},{\varvec{W}})\) if and only if

\(-f_1({\varvec{Q}}_{0})+({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}) {\text {vec}}({\varvec{\theta }}_0)>0\). If \(f_1({\varvec{Q}}_{0})<({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}) {\text {vec}}({\varvec{\theta }}_0),\) then

$$\begin{aligned}&\frac{f_1({\varvec{Q}}_{0})}{({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}) {\text {vec}}({\varvec{\theta }}_0)}<1, \, \text{ and } \, ({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\text {vec}}({\varvec{\theta }}_0)\displaystyle \frac{f_1({\varvec{Q}}_{0})}{({\text {vec}}({\varvec{\theta }}_0))^{\prime } {\varvec{F}}_1({\varvec{Q}}_{0}){\text {vec}}({\varvec{\theta }}_0)}\\&\quad <||{\varvec{\theta }}_0||^2. \end{aligned}$$

Further, since \(f_1({\varvec{Q}}_{0})>0\), we have

$$\begin{aligned} \displaystyle \frac{({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}) {\text {vec}}({\varvec{\theta }}_0)}{({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\text {vec}}({\varvec{\theta }}_0)f_1}>\frac{1}{||{\varvec{\theta }}_0||^2}. \end{aligned}$$
(A.4)

Further, by using Courant Theorem, we have

$$\begin{aligned} \displaystyle \text {ch}_{min}({\varvec{F}}_1({\varvec{Q}}_{0}))<\displaystyle \frac{({\text {vec}} ({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}){\text {vec}}({\varvec{\theta }}_0)}{({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\text {vec}}({\varvec{\theta }}_0)} <\displaystyle \text {ch}_{max}({\varvec{F}}_1({\varvec{Q}}_{0})). \end{aligned}$$
(A.5)

Therefore, for the inequality in (A.4) to hold, it suffices to have

$$\begin{aligned} \frac{1}{||{\varvec{\theta }}_0||^2}<\frac{\text {ch}_{min}({\varvec{F}}_1({\varvec{Q}}_{0}))}{f_1({\varvec{Q}}_{0})}. \end{aligned}$$

That is if \(||{\varvec{\theta }}_0||^2>\displaystyle \frac{f_1({\varvec{Q}}_{0})}{\text {ch}_{min}({\varvec{F}}_1 ({\varvec{Q}}_{0}))}\), then \(\text {ADR}(\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}),{\varvec{B}},{\varvec{W}})>\text {ADR}(\hat{{\varvec{B}}}_1, {\varvec{B}};{\varvec{W}}).\) Further, if \(f_1({\varvec{Q}}_{0})>({\text {vec}}({\varvec{\theta }}_0))^{\prime }{\varvec{F}}_1({\varvec{Q}}_{0}) {\text {vec}}({\varvec{\theta }}_0)\), by using (A.5), we establish the condition that if \(||{\varvec{\theta }}_0||^2<\displaystyle \frac{f_1({\varvec{Q}}_{0})}{\text {ch}_{max}({\varvec{F}}_1 ({\varvec{Q}}_{0}))}\), then \(\text {ADR}(\tilde{{\varvec{B}}}(\hat{{\varvec{\Sigma }}}),{\varvec{B}},{\varvec{W}})<\text {ADR} (\hat{{\varvec{B}}}_1,{\varvec{B}};{\varvec{W}}),\) as stated. \(\square \)

Proposition A.1

Under the Assumption 1, we have

$$\begin{aligned} \begin{aligned}&(1)\quad \displaystyle {\lim _{n\rightarrow \infty }}n^{-1}{\varvec{M}}^{\prime }{\varvec{M}} = {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}, \quad n^{-1}{\varvec{\Psi }}^{\prime }{\varvec{\Psi }} \xrightarrow [n\rightarrow \infty ]{P} \sigma _\psi ^2{\varvec{I}}_{p}, \quad n^{-1}{\varvec{\Delta }}^{\prime }{\varvec{\Delta }} \xrightarrow [n\rightarrow \infty ]{P} \sigma _\delta ^2 {\varvec{I}}_{p};\\&(2)\quad n^{-1}\left[ {\varvec{M}}^{\prime }{\varvec{E}} \vdots {\varvec{\Psi }}^{\prime }{\varvec{E}} \vdots {\varvec{\Delta }}^{\prime }{\varvec{E}} \right] \xrightarrow [n\rightarrow \infty ]{P}{\varvec{0}}, \quad { } and \quad { } \quad n^{-1}\left[ {\varvec{M}}^{\prime }{\varvec{\Psi }}\vdots {\varvec{M}}^{\prime }{\varvec{\Delta }} \vdots {\varvec{\Psi }}^{\prime }{\varvec{\Delta }} \right] \xrightarrow [n\rightarrow \infty ]{P}{\varvec{0}}. \end{aligned} \end{aligned}$$

Proof

We have \({\varvec{M}}^{\prime }{\varvec{M}}=\displaystyle {\sum \nolimits _{i=1}^{n}}{{\varvec{m}}}_{(i)}{{\varvec{m}}}^{\prime }_{(i)}\). Then, from the condition \(({\mathcal {A}}_{5})\) and Cesàro’s mean theorem, we get \(\displaystyle {\lim \limits _{n\rightarrow \infty }}n^{-1}{\varvec{M}}^{\prime }{\varvec{M}}={\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}\). Further, from Lemma A.2, we have

$$\begin{aligned}&\left[ n^{-1/2}{\varvec{\Psi }}^{\prime }{\varvec{\Psi }}-n^{1/2} \sigma _\psi ^2{\varvec{I}}_{p}\vdots n^{-1/2}{\varvec{\Delta }}^{\prime }{\varvec{\Delta }}-n^{1/2} \sigma _\delta ^2{\varvec{I}}_{p}\right] =O_{p}(1),\\&\quad { } n^{-1/2}\left[ {\varvec{M}}^{\prime }{\varvec{E}} \vdots {\varvec{\Psi }}^{\prime }{\varvec{E}} \vdots {\varvec{\Delta }}^{\prime }{\varvec{E}} \right] =O_{p}(1), \end{aligned}$$

and \(n^{-1/2}\left[ {\varvec{M}}^{\prime }{\varvec{\Psi }}\vdots {\varvec{M}}^{\prime }{\varvec{\Delta }} \vdots {\varvec{\Psi }}^{\prime }{\varvec{\Delta }} \right] =O_{p}(1)\). Then, together with Slutsky’s theorem, we get the stated results. \(\square \)

From Proposition A.1, we establish the following corollary which plays an important role in deriving the the joint asymptotic normality of the UE and the RE. In the sequel, let

\(K_{\scriptscriptstyle 0,n}=\left( n^{-1}{\varvec{M}}^{\prime }{\varvec{M}}+\sigma ^{2}_{\psi }{\varvec{I}}_{p}+\sigma ^{2}_{\delta }{\varvec{I}}_{p}\right) ^{-1} \left( n^{-1}{\varvec{M}}^{\prime }{\varvec{M}}+\sigma ^{2}_{\psi }{\varvec{I}}_{p}\right) \).

Corollary A.2

Suppose that Assumption 1 holds. Then, \(\hat{{\varvec{\Sigma }}}_X \xrightarrow [n\rightarrow \infty ]{P}{\varvec{\Sigma }}\), \(K_{\scriptscriptstyle 0,n}\xrightarrow [n\rightarrow \infty ]{P} {\varvec{K}},\)

\(\hat{{\varvec{\Sigma }}}_D \xrightarrow [n\rightarrow \infty ]{P} {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\), \({\varvec{K}}_{X}\xrightarrow [n\rightarrow \infty ]{P} {\varvec{K}}\), \(n^{-1}({\varvec{X}}^{\prime }{\varvec{Z}})\xrightarrow [n\rightarrow \infty ]{P} \left( {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\right) {\varvec{B}}\).

Proof

Since \({\varvec{X}}={\varvec{M}}+{\varvec{\Psi }}+{\varvec{\Delta }}\), then \(\hat{{\varvec{\Sigma }}}_X=n^{-1}({\varvec{M}}+{\varvec{\Psi }}+{\varvec{\Delta }})^{\prime }({\varvec{M}}+{\varvec{\Psi }} +{\varvec{\Delta }})\) and then

$$\begin{aligned}\begin{aligned} \hat{{\varvec{\Sigma }}}_X&=n^{-1}({\varvec{M}}^{\prime }{\varvec{M}}+{\varvec{M}}^{\prime }{\varvec{\Psi }}+{\varvec{M}}^{\prime }{\varvec{\Psi }}+{\varvec{\Psi }}^{\prime }{\varvec{M}} +{\varvec{\Psi }}^{\prime }{\varvec{\Psi }}+{\varvec{\Psi }}^{\prime }{\varvec{\Delta }} +{\varvec{\Delta }}^{\prime }{\varvec{M}}+{\varvec{\Delta }}^{\prime }{\varvec{\Psi }}+{\varvec{\Delta }}^{\prime }{\varvec{\Delta }}). \end{aligned} \end{aligned}$$

Then, by using Proposition A.1, we have \(n^{-1}\left( {\varvec{M}}^{\prime }{\varvec{\Psi }}+{\varvec{M}}^{\prime }{\varvec{\Psi }}+{\varvec{\Psi }}^{\prime }{\varvec{M}}+{\varvec{\Delta }}^{\prime }{\varvec{M}} +{\varvec{\Psi }}^{\prime }{\varvec{\Delta }}\right) \xrightarrow [n\rightarrow \infty ]{P}0\),

\(K_{\scriptscriptstyle 0,n}\xrightarrow [n\rightarrow \infty ]{P} {\varvec{K}}\), and \(n^{-1}({\varvec{M}}^{\prime }{\varvec{M}}+{\varvec{\Psi }}^{\prime }{\varvec{\Psi }}+ {\varvec{\Delta }}^{\prime }{\varvec{\Delta }})\xrightarrow [n\rightarrow \infty ]{P} {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}+\sigma _\delta ^2{\varvec{I}}_{p}\). Hence,

\({\hat{\Sigma }}_X\xrightarrow [n\rightarrow \infty ]{P}{\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}+\sigma _\delta ^2{\varvec{I}}_{p}={\varvec{\Sigma }}\). Since \({\hat{\Sigma }}_D={\hat{\Sigma }}_X-{\hat{\sigma }}_\delta ^2{\varvec{I}}_{p}\), where \({\hat{\sigma }}_\delta ^2\) is a consistent estimator for \(\sigma _\delta ^2\), then \({\hat{\Sigma }}_D\xrightarrow [n\rightarrow \infty ]{P}{\varvec{\Sigma }} -\sigma _\delta ^2{\varvec{I}}_{p}={\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\). Thus,

\({\varvec{K}}_{X}={\hat{\Sigma }}_X^{-1}{\hat{\Sigma }}_D\xrightarrow [n\rightarrow \infty ]{P} {\varvec{\Sigma }}^{-1}\left( {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\right) ={\varvec{K}}\). Further,

$$\begin{aligned} n^{-1}({\varvec{X}}^{\prime }{\varvec{Y}})= & {} n^{-1}[{\varvec{X}}^{\prime }{\varvec{X}}-({\varvec{M}}+{\varvec{\Psi }}+{\varvec{\Delta }})^{\prime }{\varvec{\Delta }}]{\varvec{\beta }}+({\varvec{M}} +{\varvec{\Psi }}+{\varvec{\Delta }})^{\prime }{\varvec{E}} \xrightarrow [n\rightarrow \infty ]{P}({\varvec{\Sigma }} -\sigma _\delta ^2{\varvec{I}}_{p}){\varvec{\beta }}\\= & {} \left( {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\right) {\varvec{\beta }}. \end{aligned}$$

\(\square \)

By using Corollary A.2, we prove the following proposition which proves that the UE is a consistent estimator.

Proposition A.2

If Assumption 1 hold, then \(\hat{{\varvec{B}}}_1 \xrightarrow [n\rightarrow \infty ]{P}{\varvec{B}}\).

Proof

We have \(\hat{{\varvec{B}}}_1 ={\varvec{K}}_{X}^{-1}\hat{{\varvec{\Sigma }}}_{X}^{-1} \left( \frac{{\varvec{X}}^{\prime }{\varvec{Z}}}{n}\right) \). Further, from Corollary A.2,

$$\begin{aligned}&{\varvec{K}}_{X} \xrightarrow [n\rightarrow \infty ]{P}{\varvec{K}}={\varvec{\Sigma }}^{-1} \left( {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\right) , \hat{{\varvec{\Sigma }}}_{X}\xrightarrow [n\rightarrow \infty ]{P}{\varvec{\Sigma }} \text{ and } \\&\quad \frac{{\varvec{X}}^{\prime }{\varvec{Z}}}{n}\xrightarrow [n\rightarrow \infty ]{P} \left( {\varvec{\sigma }}_{\scriptscriptstyle M}{\varvec{\sigma }}^{\prime }_{\scriptscriptstyle M}+\sigma _\psi ^2{\varvec{I}}_{p}\right) {\varvec{B}}. \end{aligned}$$

This proves that \(\hat{{\varvec{B}}}_1 \xrightarrow [n\rightarrow \infty ]{P}{\varvec{B}}\), as desired result. \(\square \)

By combining Corollary A.2, Lemma A.1 and Lemma A.2, we prove Theorem 2.1.

Proof of Theorem 2.1

We have

$$\begin{aligned} \hat{{\varvec{B}}}_1=n^{-\frac{1}{2}}\hat{{\varvec{\Sigma }}}_D^{-1}{\varvec{T}}_{n}+n^{-\frac{1}{2}} \hat{{\varvec{\Sigma }}}_D^{-1}{\varvec{H}}_{n}{\varvec{K}}{\varvec{B}} +\hat{{\varvec{\Sigma }}}_D^{-1}{\hat{{\varvec{\Sigma }}}_D}{\varvec{B}}+O_p(n^{-1}). \end{aligned}$$

Hence \(n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})=\hat{{\varvec{\Sigma }}}_D^{-1}[{\varvec{T}}_{n} +{\varvec{H}}_{n}{\varvec{K}}{\varvec{B}}]+{O_p}(n^{-\frac{1}{2}})\) and then,

$$\begin{aligned} n^{\frac{1}{2}}{(\hat{{\varvec{B}}}_1-{\varvec{B}})}^{\prime }=[{\varvec{T}}^{\prime }_{n}+{\varvec{B}}^{\prime }{\varvec{K}} {\varvec{H}}_{n}]\hat{{\varvec{\Sigma }}}_D^{-1}+{O_p}(n^{-\frac{1}{2}}). \end{aligned}$$

Apply the Vec() operator on both sides, we obtain

$$\begin{aligned} {\text {vec}}[n^{\frac{1}{2}}{(\hat{{\varvec{B}}}_1-{\varvec{B}})}^{\prime }] =(\hat{{\varvec{\Sigma }}}_D^{-1}\otimes I_q)[{\text {vec}}({\varvec{T}}^{\prime }_{n})+{\text {vec}}({\varvec{B}}^{\prime }{\varvec{K}} {\varvec{H}}_{n})]+O_p(n^{-\frac{1}{2}}).\qquad \end{aligned}$$
(A.6)

Further, we have \(\mathrm {Vec}({\varvec{T}}^{\prime }_{n}) =n^{-\frac{1}{2}}\sum \limits _{i=1}^n {\varvec{U}}_{1i}{\varvec{w}}_{1i}\) where

\({\varvec{U}}_{1i}= [{{\varvec{m}}}_{(i)}\otimes {{\varvec{I}}}_q,{{\varvec{I}}}_{pq},{{\varvec{I}}}_{pq},-{{\varvec{m}}}_{(i)}\otimes {\varvec{B}}^{\prime }, -{{\varvec{I}}}_p\otimes {\varvec{B}}^{\prime },-{{\varvec{I}}}_p\otimes {\varvec{B}}^{\prime }]\)

are \(qp\times (2qp+2p^2+p+q)\) non-random matrices and

$$\begin{aligned} {\varvec{w}}_{1i}={\text {vec}}\left[ ({\varvec{\epsilon }}_{(i)},{\varvec{\epsilon }}_{(i)} {{\varvec{\psi }}^{\prime }}_{(i)},{\varvec{\epsilon }}_{(i)}{{\varvec{\delta }}^{\prime }}_{(i)}, {{\varvec{\delta }}}_{(i)},{\varvec{\Delta }}_{(i)}{{\varvec{\psi }}^{\prime }}_{(i)},{{\varvec{\delta }}}_{(i)} {{\varvec{\delta }}^{\prime }}_{(i)}-\sigma _\delta ^2{{\varvec{I}}}_p)\right] \end{aligned}$$

are \((2qp+2p^2+p+q)\) iid column of random vectors. Similarly, one can verify that

\({\text {vec}}\left( {\varvec{B}}^{\prime }{{{\varvec{K}}}}{{\varvec{H}}}_{n}\right) =n^{-\frac{1}{2}}\displaystyle \sum \limits _{i=1}^n {\varvec{U}}_{2i}{\varvec{w}}_{2i}\) where

\({\varvec{U}}_{2i}= (I_p\otimes {\varvec{B}}^{\prime }{\varvec{K}}) \left[ ({{\varvec{I}}}_p\otimes {{\varvec{m}}}_{(i)}),({{\varvec{m}}}_{(i)}\otimes {{\varvec{I}}}_p), {{\varvec{I}}}_{p^2},{{\varvec{I}}}_{p^2},{{\varvec{I}}}_{p^2}\right] \)

are \(pq\times (3p^2+2p)\) non-random matrices and

$$\begin{aligned}\begin{aligned} {\varvec{w}}_{2i}&={\text {vec}}\big [({{\varvec{\psi }}^{\prime }}_{(i)}+{{\varvec{\delta }}^{\prime }}_{(i)}, {{\varvec{\psi }}}_{(i)}+{{\varvec{\delta }}}_{(i)}, {{\varvec{\psi }}}_{(i)}{{\varvec{\delta }}^{\prime }}_{(i)}+{{\varvec{\delta }}}_{(i)}{{\varvec{\psi }}^{\prime }}_{(i)}, {{\varvec{\psi }}}_{(i)}{{\varvec{\psi }}^{\prime }}_{(i)}-\sigma _{{\psi }}^2{{\varvec{I}}}_p,{{\varvec{\delta }}}_{(i)}{{\varvec{\delta }}^{\prime }}_{(i)}-\sigma _\delta ^2{{\varvec{I}}}_p)\big ] \end{aligned} \end{aligned}$$

are \((3p^2+2p)\)-column random vectors. Therefore, we have

\(\left[ {\text {vec}}({\varvec{T}}^{\prime }_{n})+{\text {vec}}\left( {\varvec{B}}^{\prime }{{{\varvec{K}}}}{{\varvec{H}}}_{n}\right) \right] =n^{-1/2}\sum \limits _{i=1}^n[{\varvec{U}}_{1i},\ {\varvec{U}}_{2i}][{\varvec{w}}^{\prime }_{1i},\ {\varvec{w}}^{\prime }_{2i}]^{\prime } =n^{-1/2}\sum \limits _{i=1}^n {\varvec{U}}_{i}{\varvec{w}}_{i}\).

We also have \(\mathrm {E}\left( {\text {vec}}({\varvec{T}}^{\prime }_{n})+{\text {vec}} \left( {\varvec{B}}^{\prime }{{{\varvec{K}}}}{{\varvec{H}}}_{n}\right) \right) =0\). Further, let

\({{\varvec{\Lambda }}} =\lim \limits _{n\rightarrow \infty }n^{-1}\mathrm {E}\left[ \left( \sum \limits _{i=1}^n {\varvec{U}}_{i}{\varvec{w}}_{i}\right) \left( \sum \limits _{i=1}^n {\varvec{U}}_{i}{\varvec{w}}_{i}\right) ^{\prime }\right] \).

Then, by Lemma A.1, we get

\(\left[ {\text {vec}}({\varvec{T}}^{\prime }_{n})+{\text {vec}}\left( {\varvec{B}}^{\prime }{{{\varvec{K}}}}{{\varvec{H}}}_{n}\right) \right] \xrightarrow [n\rightarrow \infty ]{d}{\varvec{\varsigma }}_{0} \sim {\mathcal {N}}_{pq}({{\varvec{0}}},{{\varvec{\Lambda }}})\).

Therefore, together with (A.6), Corollary A.2 and Slutsky’s theorem,

$$\begin{aligned} {\text {vec}}[n^{\frac{1}{2}}(\hat{{\varvec{B}}}_1-{\varvec{B}})^{\prime }] \xrightarrow [n\rightarrow \infty ]{d}{\text {vec}}({\varvec{\eta }}^{\prime }_1)\sim {\mathcal {N}}_{qp}({\varvec{0}},{\varvec{A}}_1{\varvec{\Lambda }}{\varvec{A}}_1^{\prime }), \end{aligned}$$

this completes the proof. \(\square \)

Proof of Proposition 2.1

From 2.3, adding and subtracting \({\varvec{X}}\hat{{\varvec{B}}}_{1}\), we get

$$\begin{aligned} {\mathcal {G}}_{2}=\text {trace}({\varvec{Z}}^{\prime }{\varvec{Z}})+\text {trace} (\hat{{\varvec{B}}}^{\prime }_{1}{\varvec{X}}{\varvec{X}}\hat{{\varvec{B}}}_{1}) +\text {trace}((\hat{{\varvec{B}}}_{1}-{\varvec{B}})^{\prime }{\varvec{X}}^{\prime }{\varvec{X}}(\hat{{\varvec{B}}}_{1} -{\varvec{B}}))\nonumber \\ -2 \text { trace}({\varvec{Z}}^{\prime }{\varvec{X}}\hat{{\varvec{B}}}_{1})+2\text {trace}(({\varvec{Z}} -{\varvec{X}}{\varvec{B}})^{\prime }{\varvec{X}}(\hat{{\varvec{B}}}_{1}-{\varvec{B}})) -\text {trace}({\varvec{B}}^{\prime }n{\varvec{\Sigma }}_{X}{\varvec{B}}).\quad {} \end{aligned}$$
(A.7)

Further

$$\begin{aligned} \text {trace}[{\varvec{B}}^{\prime }(n{\varvec{\Sigma }}_{X}){\varvec{B}}-{\varvec{B}}^{\prime }(n\hat{{\varvec{\Sigma }}}_{X}) {\varvec{K}}_{X}{\varvec{B}}]=\text { trace}((\hat{{\varvec{B}}}_{1}-{\varvec{B}})^{\prime }n{\varvec{\Sigma }}_{X} ({\varvec{I}}_{p}-{\varvec{K}}_{X})(\hat{{\varvec{B}}}_{1}-{\varvec{B}}))\nonumber \\ -2\text {trace}(\hat{{\varvec{B}}}^{\prime }_{1}n{\varvec{\Sigma }}_{X}({\varvec{I}}_{p}-{\varvec{K}}_{X}) (\hat{{\varvec{B}}}_{1}-{\varvec{B}})) +\text {trace}(\hat{{\varvec{B}}}^{\prime }_{1}n{\varvec{\Sigma }}_{X}({\varvec{I}}_{p}-{\varvec{K}}_{X}) \hat{{\varvec{B}}}_{1}).\quad { } \nonumber \\ \end{aligned}$$
(A.8)

By combining the relations (A.7) and (A.8), we get

$$\begin{aligned} {\mathcal {G}}_{2}&=\text {trace}({\varvec{Z}}^{\prime }{\varvec{Z}})+\text {trace}(\hat{{\varvec{B}}}^{\prime }_{1}n {\varvec{\Sigma }}_{X}{\varvec{K}}_{X}\hat{{\varvec{B}}}_{1})-2 \text {trace}({\varvec{Z}}^{\prime } {\varvec{X}}\hat{{\varvec{B}}}_{1})\\&\quad +\text {trace}((\hat{{\varvec{B}}}_{1}-{\varvec{B}})^{\prime }n{\varvec{\Sigma }}_{X}{\varvec{K}}_{X} (\hat{{\varvec{B}}}_{1}-{\varvec{B}})) +2\text {trace}(({\varvec{Z}}^{\prime }{\varvec{X}}-\hat{{\varvec{B}}}_{1}n{\varvec{\Sigma }}_{X}{\varvec{K}}_{X}) (\hat{{\varvec{B}}}_{1}-{\varvec{B}})). \end{aligned}$$

The stated result follows from the fact that \({\varvec{Z}}^{\prime }{\varvec{X}}-\hat{{\varvec{B}}}_{1}n{\varvec{\Sigma }}_{X}{\varvec{K}}_{X}={\varvec{0}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkurunziza, S. On efficiency of some restricted estimators in a multivariate regression model. Stat Papers 64, 617–642 (2023). https://doi.org/10.1007/s00362-022-01324-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-022-01324-w

Keywords

Navigation