Skip to main content
Log in

Effect of temperature on the interactions between cellulose and lignin via molecular dynamics simulations

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Heating is essential in various biomass pre-treatments and thermal conversion processes. It is of practical significance to study the characteristics of cellulose-lignin and lignin-lignin interactions at different temperatures to explore the essence of biomass component separation and further optimize the pre-treatment and utilization processes. Molecular dynamics (MD) simulations were conducted for the cellulose-lignin complex at three different temperatures. Relationships between the temperatures and the distinct interaction characters were investigated during the dynamics processes, including the distribution of lignin molecules on the cellulose surface, lignin self-aggregations, and solvation properties of different cellulose surfaces. The simulations indicate that the lignin-cellulose interactions at different temperatures are mainly influenced by two factors, i.e. the degree of the cellulose surface solvation and that of lignin self-aggregation. The current work contributes to clarifying the essence of heating on biomass compositions and may inspire more cost-effective separation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Biores Technol 101(13):4851–4861

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Bergenstrahle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study. Langmuir 25(8):4635–4642

    Article  CAS  PubMed  Google Scholar 

  • Biermann O, Hadicke E, Koltzenburg S, Muller-Plathe F (2001) Hydrophilicity and lipophilicity of cellulose crystal surfaces. Angew Chem Int Ed 40(20):3822–3825

    Article  CAS  Google Scholar 

  • Bjurhager I, Olsson AM, Zhang B, Gerber L, Kumar M, Berglund LA, Burgert I, Sundberg B, Salmen L (2010) Ultrastructure and mechanical properties of populus wood with reduced lignin content caused by transgenic down-regulation of cinnamate 4-hydroxylase. Biomacromol 11(9):2359–2365

    Article  CAS  Google Scholar 

  • Chen X, Chen YQ, Chen Z, Zhu DC, Yang HP, Liu P, Li T, Chen HP (2018) Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts. J Anal Appl Pyrol 129:53–60

    Article  CAS  Google Scholar 

  • Chen X, Che QF, Li SJ, Liu Z, Yang HP, Chen YQ, Wang XH, Shao JA, Chen HP (2019) Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Process Technol 196:106180

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh ewald: nn N Log(N) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  CAS  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195-1203

    Article  PubMed  PubMed Central  Google Scholar 

  • Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, Mackerell AD Jr (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 7(10):3162–3180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han XW, Guo Y, Liu XH, Xia QN, Wang YQ (2019) Catalytic conversion of lignocellulosic biomass into hydrocarbons: A mini review. Catal Today 319:2–13

    Article  CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82(1):59–73

    Article  CAS  PubMed  Google Scholar 

  • Hatcher E, Guvench O, Mackerell AD Jr (2009) CHARMM additive all-atom force field for acyclic polyalcohols, acyclic carbohydrates and inositol. J Chem Theory Comput 5(5):1315–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatcher E, Guvench O, Mackerell AD Jr (2009) CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. J Phys Chem B 113(37):12466–12476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  CAS  PubMed  Google Scholar 

  • Irvine GM (1985) The significance of the glass transition of lignin in thermomechanical pulping. Wood Sci Technol 19(2):139–149

    Article  CAS  Google Scholar 

  • Jiang LQ, Wu YX, Zhao ZL, Li HB, Zhao K, Zhang F (2019) Selectively biorefining levoglucosan from NaOH pretreated corncobs via fast pyrolysis. Cellulose 26(13–14):7877–7887

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 1(2):119–134

    Article  CAS  Google Scholar 

  • Kim Y, Mosier NS, Ladisch MR, Pallapolu VR, Lee YY, Garlock R, Balan V, Dale BE, Donohoe BS, Vinzant TB, Elander RT, Falls M, Sierra R, Holtzapple MT, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Warner RE (2011) Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Biores Technol 102(24):11089–11096

    Article  CAS  Google Scholar 

  • Kumar R, Bhagia S, Smith MD, Petridis L, Ong RG, Cai CM, Mittal A, Himmel MH, Balan V, Dale BE, Ragauskas AJ, Smith JC, Wyman CE (2018) Cellulose-hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion. Green Chem 20(4):921–934

    Article  CAS  Google Scholar 

  • Langan P, Petridis L, O’Neill HM, Pingali SV, Foston M, Nishiyama Y, Schulz R, Lindner B, Hanson BL, Harton S, Heller WT, Urban V, Evans BR, Gnanakaran S, Ragauskas AJ, Smith JC, Davison BH (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16(1):63–68

    Article  CAS  Google Scholar 

  • Li M, Pu YQ, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindner B, Petridis L, Schulz R, Smith JC (2013) Solvent-driven preferential association of lignin with regions of crystalline cellulose in molecular dynamics simulation. Biomacromol 14(10):3390–3398

    Article  CAS  Google Scholar 

  • Lu Q, Zhou MX, Li WT, Wang X, Cui MS, Yang YP (2018) Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study. Catal Today 302:169–179

    Article  CAS  Google Scholar 

  • Lu Q, Wu YT, Hu B, Liu J, Liu DJ, Dong CQ, Yang YP (2019) Insight into the mechanism of secondary reactions in cellulose pyrolysis: interactions between levoglucosan and acetic acid. Cellulose 26(15):8279–8290

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Ibeta. Carbohyd Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107(10):2394–2403

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Mou HY, Wu SB (2016) Comparison of hydrothermal, hydrotropic and organosolv pretreatment for improving the enzymatic digestibility of bamboo. Cellulose 24(1):85–94

    Article  CAS  Google Scholar 

  • Newman RH, Hill SJ, Harris PJ (2013) Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol 163(4):1558–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Nixon BT, Mansouri K, Singh A, Du J, Davis JK, Lee JG, Slabaugh E, Vandavasi VG, O’Neill H, Roberts EM, Roberts AW, Yingling YG, Haigler CH (2016) Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci Rep 6:28696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petridis L, Smith JC (2016) Conformations of low-molecular-weight lignin polymers in water. Chemsuschem 9(3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Petridis L, Pingali SV, Urban V, Heller WT, O’Neill HM, Foston M, Ragauskas A, Smith JC (2011) Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation. Phys Rev E 83(6 Pt 1):061911

    Article  CAS  Google Scholar 

  • Petridis L, Schulz R, Smith JC (2011) Simulation analysis of the temperature dependence of lignin structure and dynamics. J Am Chem Soc 133(50):20277–20287

    Article  CAS  PubMed  Google Scholar 

  • Pu YQ, Zhang DC, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels, Bioprod Biorefin 2(1):58–73

    Article  CAS  Google Scholar 

  • Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S (2021) Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere 284:131372

    Article  CAS  PubMed  Google Scholar 

  • Sega M, Dellago C (2017) Long-range dispersion effects on the water/vapor interface simulated using the most common models. J Phys Chem B 121(15):3798–3803

    Article  CAS  PubMed  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131(41):14786–14794

    Article  CAS  PubMed  Google Scholar 

  • Silveira RL, Stoyanov SR, Kovalenko A, Skaf MS (2016) Cellulose aggregation under hydrothermal pretreatment conditions. Biomacromol 17(8):2582–2590

    Article  CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178(2):239–252

    Article  CAS  PubMed  Google Scholar 

  • Vermaas JV, Crowley MF, Beckham GT (2019) A Quantitative Molecular Atlas for Interactions Between Lignin and Cellulose. ACS Sustain Chem Eng 7:19570–19583

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  CAS  Google Scholar 

  • Vermaas JV, Petridis L, Qi XH, Schulz R, Lindner B, Smith JC (2015) Mechanism of lignin inhibition of enzymatic biomass deconstruction. Biotechnol Biofuels 8:217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vermaas JV, Dellon L, Broadbelt LJ, Beckham GT, Crowley MF (2018) Automated transformation of lignin topologies into atomic structures with ligninbuilder. ACS Sustain Chem Eng 7(3):3443–3453

    Article  CAS  Google Scholar 

  • Vermaas JV, Petridis L, Ralph J, Crowley MF, Beckham GT (2019) Systematic parameterization of lignin for the CHARMM force field. Green Chem 21(1):109–122

    Article  CAS  Google Scholar 

  • Vermaas JV, Crowley MF, Beckham GT (2019) A Quantitative Molecular Atlas for Interactions Between Lignin and Cellulose. ACS Sustain Chem Eng 7:19570–19583

    Article  CAS  Google Scholar 

  • Vural D, Gainaru C, O’Neill H, Pu Y, Smith MD, Parks JM, Pingali SV, Mamontov E, Davison BH, Sokolov AP, Ragauskas AJ, Smith JC, Petridis L (2018) Impact of hydration and temperature history on the structure and dynamics of lignin. Green Chem 20(7):1602–1611

    Article  CAS  Google Scholar 

  • Wang D, Lin LY, Fu F (2020) Deformation mechanisms of wood cell walls under tensile loading: a comparative study of compression wood (CW) and normal wood (NW). Cellulose 27(8):4161–4172

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2(1):26–40

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose I(alpha) and III(I). Biomacromol 8(3):817–824

    Article  CAS  Google Scholar 

  • Zhang YH, Ding SY, Mielenz JR, Cui JW, Elander RT, Laser M, Himmel ME, McMillan JR, Lynd LR (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol Bioeng 97(2):214–223

    Article  CAS  PubMed  Google Scholar 

  • Zhao XB, Zhang LH, Liu DH (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial supports from National Natural Science Foundation of China (51922040, 51821004, 62175063), the Fundamental Research Funds for the Central Universities (2020DF01, 2021MS026) and the China Postdoctoral Science Foundation (2020M680482, 2021T140202).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. This article contains supplementary information, which is available to authorized users.

Supplementary file1 (DOCX 619 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Yang, Jq., Liu, Y. et al. Effect of temperature on the interactions between cellulose and lignin via molecular dynamics simulations. Cellulose 29, 6565–6578 (2022). https://doi.org/10.1007/s10570-022-04684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04684-6

Keywords

Navigation