Skip to main content
Log in

Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This study introduces a temperature swing method for simultaneously producing biodiesel and ethyl levulinate through in-situ transesterification of spent coffee grounds. Effects of temperature and the amounts of catalyst and ethanol were investigated and it was found that the temperature predominantly affects the yield. Response surface methodology was employed to find the optimal conditions for maximizing biodiesel and ethyl levulinate yield. The highest biodiesel yield of 14.91±0.83 wt% was found at 140 °C, while the highest ethyl levulinate yield of 3.29±0.15 wt% was found at 160 °C. The maximum ethyl levulinate yield occurs at higher temperature than biodiesel due to decomposition of cellulose to produce ethyl levulinate, while the biodiesel yield decreases at elevated temperature due to unwanted humin formation. The proposed swing operation of the optimal temperature from 160 to 140 °C gives the highest yield of 15.02 wt% biodiesel and 2.76 wt% ethyl levulinate in the single-pot process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Lim, Y. Kim, D. Kang M. Lee, A. Jo and J. W. Lee, ACS Catal., 11, 12220 (2021).

    Article  CAS  Google Scholar 

  2. J. S. Zhang, Y. Zhao, D. L. Akins and J. W. Lee, J. Phys. Chem. C, 115, 8386 (2011).

    Article  CAS  Google Scholar 

  3. M. Kim, J. Yang, B. Kim and J. W. Lee, Korean J. Chem. Eng., 37, 1933 (2020).

    Article  CAS  Google Scholar 

  4. S. Kang, M. J. Realff, Y. Yuan, R. Chance and J. H. Lee, Korean J. Chem. Eng., https://doi.org/10.1007/s11814-021-1053-4 (2022).

  5. A. K. Yadav, M. E. Khan and A. Pal, Korean J. Chem. Eng., 34, 340 (2017).

    Article  CAS  Google Scholar 

  6. J. Park, B. Kim, J. Son and J. W. Lee, Bioresour. Technol., 249, 494 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. S. Dey, N. M. Reang, P. K. Das and M. Deb, J. Clean. Prod., 286, 124981 (2021).

    Article  CAS  Google Scholar 

  8. D. Singh, D. Sharma, S. L. Soni, S. Sharma, P. K. Sharma and A. Jhalani, Fuel, 262, 116553 (2020).

    Article  CAS  Google Scholar 

  9. B. Kim, H. Y. Heo, J. Son, J. Yang, Y. K. Chang, J. H. Lee and J. W. Lee, Algal Res., 41, 101557 (2019).

    Article  Google Scholar 

  10. T. M. Mata, A. A. Martins and N. S. Caetano, Renew. Sust. Energ. Rev., 14, 217 (2010).

    Article  CAS  Google Scholar 

  11. ICO, World Coffee Consumption, 2020. http://www.ico.org/prices/new-consumption-table.pdf.

  12. A. S. Fernandes, F. V. C. Mello, S. Thode, R. M. Carpes, J. G. Honorio, M. R. C. Marques, I. Felzenszwalb and E. R. A. Ferraz, Ecotoxicol. Environ. Saf., 141, 30 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. T. M. Mata, A. A. Martins and N. S. Caetano, Bioresour. Technol., 247, 1077 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. R. Campos-Vega, G. Loarca-Piña, H. A. Vergara-Castañeda and B. D. Oomah, Trends Food Sci. Technol., 45, 24 (2015).

    Article  CAS  Google Scholar 

  15. A. Vandeponseele, M. Draye, C. Piot and G. Chatel, Green Chem., 22, 8544 (2020).

    Article  CAS  Google Scholar 

  16. A. W. Go, S. Sutanto, L. K. Ong, P. L. Tran-Nguyen, S. Ismadji and Y. H. Ju, Renew. Sust. Energ. Rev., 60, 284 (2016).

    Article  CAS  Google Scholar 

  17. V. Skorupskaite, V. Makareviciene and M. Gumbyte, Fuel Process. Technol., 150, 78 (2016).

    Article  CAS  Google Scholar 

  18. B. Kim, J. Park, J. Son and J. W. Lee, Bioresour. Technol., 244, 423 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. N. Mallick, S. K. Bagchi, S. Koley and A. K. Singh, Front. Microbiol., 7, 1019 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. H. Im, B. Kim and J. W. Lee, Bioresour. Technol., 193, 386 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. B. Kim, H. Im and J. W. Lee, Bioresour. Technol., 185, 421 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. J. Park, B. Kim and J. W. Lee, Bioresour. Technol., 221, 55 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. M. Moller, P. Nilges, F. Harnisch and U. Schroder, Chemsuschem, 4, 566 (2011).

    Article  PubMed  Google Scholar 

  24. M. Plaza and C. Turner, TrAC, 71, 39 (2015).

    CAS  Google Scholar 

  25. B. Kim, J. Yang, M. Kim and J. W. Lee, Bioresour. Technol., 303, 122898 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. J. Yang, J. Park, J. Son, B. Kim and J. W. Lee, Bioresour. Technol. Rep., 2, 84 (2018).

    Article  Google Scholar 

  27. J. Park, B. Kim, Y. K. Chang and J. W. Lee, Bioresour. Tecnnol., 230, 8 (2017).

    Article  Google Scholar 

  28. H. Joshi, B. R. Moser, J. Toler, W. F. Smith and T. Walker, Biomass Bioenergy, 35, 3262 (2011).

    Article  CAS  Google Scholar 

  29. J. F. L. Silva, R. Grekin, A. P. Mariano and R. Maciel, Energy Technol., 6, 613 (2018).

    Article  Google Scholar 

  30. H. Im, H. Lee, M. S. Park, J. W. Yang and J. W. Lee, Bioresour. Technol., 152, 534 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. A. Demirbas, Energ. Explor. Exploit., 25, 63 (2007).

    Article  CAS  Google Scholar 

  32. S. M. Kang, J. X. Fu and G. Zhang, Renew. Sust. Energ. Rev., 94, 340 (2018).

    Article  CAS  Google Scholar 

  33. A. E. Abomohra, X. Zheng, Q. Wang, J. Huang and R. Ebaid, Bioresour. Technol., 323, 124640 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. B. Kim, Y. K. Chang and J. W. Lee, Bioprocess Biosyst. Eng., 40, 723 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. E. Ahmad, M. I. Alam, K. K. Pant and M. A. Haider, Green Chem., 18, 4804 (2016).

    Article  CAS  Google Scholar 

  36. J. M. Tukacs, A. T. Hollo, N. Retfalvi, E. Csefalvay, G. Dibo, D. Havasi and L. T. Mika, Chemistryselect, 2, 1375 (2017).

    Article  CAS  Google Scholar 

  37. J. Son, B. Kim, J. Park, J. Yang and J. W. Lee, Bioresour. Technol., 259, 465 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. X. Hu, C. Lievens, A. Larcher and C. Z. Li, Bioresour. Technol., 102, 10104 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. J. S. Cha and B. H. Um, Korean J. Chem. Eng., 37, 1149 (2020).

    Article  CAS  Google Scholar 

  40. I. van Zandvoort, Y. H. Wang, C. B. Rasrendra, E. R. H. van Eck, P. C. A. Bruijnincx, H. J. Heeres and B. M. Weckhuysen, Chemsuschem, 6, 1745 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. T. M. C. Hoang, E. R. H. van Eck, W. P. Bula, J. G. E. Gardeniers, L. Lefferts and K. Seshan, Green Chem., 17, 959 (2015).

    Article  CAS  Google Scholar 

  42. Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger and M. Kaltschmitt, Fuel, 96, 70 (2012).

    Article  CAS  Google Scholar 

  43. N. Tuntiwiwattanapun and C. Tongcumpou, Ind. Crop. Prod., 117, 359 (2018).

    Article  CAS  Google Scholar 

  44. P. Supaporn and S. H. Yeom, Korean J. Chem. Eng., 34, 360 (2017).

    Article  CAS  Google Scholar 

  45. C. Liu, X. Lu, Z. Yu, J. Xiong, H. Bai and R. Zhang, Catalysts, 10, 1006 (2020).

    Article  CAS  Google Scholar 

  46. D. Unlu, O. Ilgen and N. D. Hilmioglu, Chem. Eng. J., 302, 260 (2016).

    Article  CAS  Google Scholar 

  47. M. F. M. Yusoff, X. B. Xu and Z. Guo, JAOCS, 91, 525 (2014).

    Article  CAS  Google Scholar 

  48. T. H. Kim, Y. K. Oh, J. W. Lee and Y. K. Chang, Algal Res., 26, 431 (2017).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation (NRF) funded by the Ministry of Science and ICT (NRF-2019M2A7A1001773), South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae W. Lee.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizqullah, H., Yang, J. & Lee, J.W. Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds. Korean J. Chem. Eng. 39, 2754–2763 (2022). https://doi.org/10.1007/s11814-022-1145-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1145-9

Keywords

Navigation