Skip to main content
Log in

Experimental and theoretical investigations of lithium isotopes separation using 10-hydroxybenzoquinoline

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Effective separation of lithium isotopes (6Li and 7Li) is a significant challenge in developing clean nuclear energy. In this work, 7Li was separated and enriched by 10-hydroxybenzoquinoline using flotation complexation extraction under alkaline conditions. In addition, the thermodynamic process of lithium isotope separation was discussed and the separation mechanism was explained by theoretical calculation according to density functional theory. Finally, the conditions of the Li+ stripping process were investigated. The results showed that the single-stage separation factor was 1.023 ± 0.001, and the abundance of 7Li reached 92.72%. The stripping ratio of lithium reached 98% by stripping five times using pure water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Michiels E, Bièvre PD (1983) Absolute isotopic composition and the atomic weight of a natural sample of lithium. Int J Mass Spectrom Ion Phys 49(2):265–274. https://doi.org/10.1016/0020-7381(83)85068-2

    Article  CAS  Google Scholar 

  2. Wang H, Li GZ, Ge Y, Liu B, Lin LW, Yang BJ, Li YN, Jing P (2020) Research progress and development trend of tritium breeder materials preparation technology for fusion reactors. Mater Rep 34(8):15075–15082 (in Chinese)

    Google Scholar 

  3. Barrado AI, Fernández M, Conde E, Quejido A, Quiñones J, Sedano L (2011) Preliminary studies of in-cell electrophoresis as 6Li enrichment technique. Fusion Eng Des 86(9–11):2662–2665. https://doi.org/10.1016/j.fusengdes.2010.11.028

    Article  CAS  Google Scholar 

  4. Council NR (1996) Nuclear wastes: technologies for separations and transmutation. The National Academies Press, Washington

    Google Scholar 

  5. Brooks SC, Southworth GR (2011) History of mercury use and environmental contamination at the Oak Ridge Y-12 Plant. Environ Pollut 159(1):219–228. https://doi.org/10.1016/j.envpol.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  6. Murali A, Zhang ZL, Free ML, Sarswat PK (2021) A comprehensive review of selected major categories of lithium isotope separation techniques. Phys Status Solidi (a) 218(19):2100340. https://doi.org/10.1002/pssa.202100340

    Article  CAS  Google Scholar 

  7. Kamencev M, Yakimova N, Moskvin L, Kuchumova I, Tkach K, Malinina Y, Tungusov O (2015) Isotopic separation of lithium ions by capillary zone electrophoresis. Electrophoresis 36(24):3014–3017. https://doi.org/10.1002/elps.201500399

    Article  CAS  PubMed  Google Scholar 

  8. Song JF, Chen GH, Li XM, He T, Jiang B (2020) Membrane chemical exchange for lithium isotope enrichment (II): multistage cascade process. Fusion Eng Des 160:111821. https://doi.org/10.1016/j.fusengdes.2020.111821

    Article  CAS  Google Scholar 

  9. Hoshino T, Terai T (2011) High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane. Fusion Eng Des 86(9–11):2168–2171. https://doi.org/10.1016/j.fusengdes.2011.03.090

    Article  CAS  Google Scholar 

  10. Saleem M, Hussain S, Zia MA, Baig MA (2007) An efficient pathway for Li6 isotope enrichment. Appl Phys B 87(4):723–726. https://doi.org/10.1007/s00340-007-2662-2

    Article  CAS  Google Scholar 

  11. Arisawa T, Maruyama Y, Suzuki Y, Shiba K (1982) Lithium isotope separation by laser. Appl Phys B 28(1):73–76. https://doi.org/10.1007/bf00693895

    Article  Google Scholar 

  12. Sun HX, Jia YZ, Liu B, Jing Y, Zhang QY, Shao F, Yao Y (2019) Separation of lithium isotopes by using solvent extraction system of crown ether-ionic liquid. Fusion Eng Des 149:111338. https://doi.org/10.1016/j.fusengdes.2019.111338

    Article  CAS  Google Scholar 

  13. Liu B, Jia YZ, Jing Y, Zhang QY, Shao F, Yao Y (2020) Lithium isotope effect in extraction of lithium chloride by 4-Aminobenzo-15-crown-5 in water-anisole ionic liquid double solvent system. J Radioanal Nucl Chem 325(2):673–682. https://doi.org/10.1007/s10967-020-07275-6

    Article  CAS  Google Scholar 

  14. Sugiyama T, Sugiura K, Enokida Y, Yamamoto I (2017) Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation. Fusion Sci Technol 67(3):584–587. https://doi.org/10.13182/fst14-t85

  15. Xiao J, Jia YZ, Yao Y, Shi CL, Sun JH, Xie SL, Jing Y (2016) A review of separation of lithium isotopes by solvent extraction. J Salt Lake Res 24(03):62–72 (in Chinese)

    CAS  Google Scholar 

  16. Taylor TI, Urey HC (1937) On the electrolytic and chemical exchange methods for the separation of the lithium isotopes. J Chem Phys 5(7):597–598. https://doi.org/10.1063/1.1750079

    Article  CAS  Google Scholar 

  17. Gu ZG, Li ZJ, Yang J (2011) Lithium isotope separation. Prog Chem 23(09):1892–1905 (in Chinese)

    CAS  Google Scholar 

  18. Martin F, Holt R (1959) Liquid-liquid extraction in inorganic chemistry. Q Rev Chem Soc 13(4):327–352. https://doi.org/10.1039/qr9591300327

    Article  CAS  Google Scholar 

  19. Lee DA (1969) The enrichment of lithium isotopes by extraction chromatography. In: Isotope effects in chemical processes. https://doi.org/10.1021/ba-1969-0089.ch004

  20. Chen YH, Yan JY, Wu FB, Ye WZ, Feng HZ, Zhao EY, Sun GY, Long HY, Chen SB, Dai PX, Yuan Q, Sheng HY (1987) Studies on separation of lithium isotopes by solvent extraction I. The separation effects of lithium isotopes by SUDAN 1-NEUTRAL ligand synergetic extraction systems. Atom Energ Sci Technol 04:433–440 (in Chinese)

    Google Scholar 

  21. Chen YH, Yan JY, Li YK, Li BL, Zeng MY, Luo JZ, Yuan Q, Sheng HY (1987) Studies on separation of lithium isotopes by solvent extraction II. Study on the separation effects of lithium isotopes by SUDAN 1-NEUTRAL ligand synergetic extraction systems. Atom Energ Sci Technol 05:536–544 (in Chinese)

    Google Scholar 

  22. Chen YH (1983) Overview of solvent extraction and separation of lithium isotopes. Chin J Rare Metals 2(04):79–87 (in Chinese)

    CAS  Google Scholar 

  23. Hu JB, Zhang W, Zheng WQ, Shi X, Xu YC, Lu HG, Yuan CY (2014) A fluorine-containing extractant and its application: CN 104140379A. (in Chinese)

  24. Xu JJ, Li ZJ, Gu ZG, Wang GL, Liu JK (2013) Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent. J Radioanal Nucl Chem 295(3):2103–2110. https://doi.org/10.1007/s10967-012-2251-7

    Article  CAS  Google Scholar 

  25. Yu HB, Dong HR, Bi PY (2011) Flotation complexation extraction of L-tryptophane and the mechanism of its separation. J B Univ Chem Technol (Nat Sci Ed) 38(01):39–43 (in Chinese)

    CAS  Google Scholar 

  26. Bi PY, Dong HR, Yu HB, Chang L (2008) A new technique for separation and purification of L-phenylalanine from fermentation liquid: flotation complexation extraction. Sep Purif Technol 63(2):487–491. https://doi.org/10.1016/j.seppur.2008.06.016

    Article  CAS  Google Scholar 

  27. Yu HB (2011) Application of floatation complexation extraction on separation and concentration of organics with amphoteric functional groups, and the study on the separation mechanism. B Univ Chem Technol, Beijing

    Google Scholar 

  28. Zhang ZZ, Jia YZ, Liu B, Sun HX, Jing Y, Zhang QY, Shao F, Qi MX, Yao Y (2020) Extraction and separation of lithium isotopes by using organic liquid film extraction system of crown ether-ionic liquid. Fusion Eng Des 161:112015. https://doi.org/10.1016/j.fusengdes.2020.112015

    Article  CAS  Google Scholar 

  29. Liu B, Jia YZ, Zhang ZZ, Sun HX, Yao Y, Jing Y, Qi MX, Zhang QY (2021) Separation of lithium isotopes by crown ether-room temperature ionic liquid-anisole friendly solvent system. J Mol Liq 340:117207. https://doi.org/10.1016/j.molliq.2021.117207

    Article  CAS  Google Scholar 

  30. Chan LH, Lassiter JC, Hauri EH, Hart SR, Blusztajn J (2009) Lithium isotope systematics of lavas from the Cook-Austral Islands: constraints on the origin of HIMU mantle. Earth Planet Sci Lett 277(3–4):433–442. https://doi.org/10.1016/j.epsl.2008.11.009

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Young DW et al (2016) Gaussian 16. Gaussian Inc, Wallingford

    Google Scholar 

  32. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  33. Lee C, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  Google Scholar 

  34. Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89(4):2193–2218. https://doi.org/10.1063/1.455064

    Article  CAS  Google Scholar 

  35. Petersson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94(9):6081–6090. https://doi.org/10.1063/1.460447

    Article  CAS  Google Scholar 

  36. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  37. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  39. Lu T, Chen FW (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  40. Xiao J, Jia YZ, Shi CL, Wang XQ, Yao Y, Jing Y (2016) Liquid-liquid extraction separation of lithium isotopes by using room-temperature ionic liquids-chloroform mixed solvent system contained benzo-15-crown-5. J Mol Liq 223:1032–1038. https://doi.org/10.1016/j.molliq.2016.08.078

    Article  CAS  Google Scholar 

  41. Rong FU, Tian LU, Fei-Wu C (2014) Comparing methods for predicting the reactive site of electrophilic substitution. Acta Phys Chim Sin 30(4):628–639. https://doi.org/10.3866/PKU.WHXB201401211

    Article  CAS  Google Scholar 

  42. Liu Z, Zhou YQ, Guo M, Lu BL, Wu ZJ, Zhou WZ (2019) Experimental and theoretical investigations of Cs+ adsorption on crown ethers modified magnetic adsorbent. J Hazard Mater 371:712–720. https://doi.org/10.1016/j.jhazmat.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  43. Yu XH, Zhang XM, Yan XW (2018) Stability of the Fe12O12 cluster. Nano Res 11(7):3574–3581. https://doi.org/10.1007/s12274-017-1923-6

    Article  CAS  Google Scholar 

  44. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267. https://doi.org/10.1063/1.1746492

    Article  CAS  Google Scholar 

  45. Betts RH, Bron J (1977) A discussion of partial isotope separation by means of solvent extraction. Sep Sci 12(6):635–639. https://doi.org/10.1080/00372367708057076

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Qinghai Province (2021-ZJ-919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Jia, Y., Liu, B. et al. Experimental and theoretical investigations of lithium isotopes separation using 10-hydroxybenzoquinoline. J Radioanal Nucl Chem 331, 3155–3165 (2022). https://doi.org/10.1007/s10967-022-08378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08378-y

Keywords

Navigation