Skip to main content
Log in

A comparison of determination methods for uranium radioactivity in environmental soil samples using a gamma spectrometer

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Comparisons of statistical analysis results between five methods using gamma spectrometry and a control group for measuring the radioactivity of uranium were performed to suggest the optimal method. In the statistical tests including linear regression, and Pearson’s correlation all gamma spectrometry methods correlated with the control group method though they had each disadvantage. The Student’s t-test results for a novel method 5 including a 230Th contribution, were 0.986 (235U) and 1.821 (238U), respectively. It had the advantage of being more accurate when evaluating the activity of 235U and 238U simultaneously. The novel method 5 can thus be recommended over others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Saito K, Petoussi-Henss N, Zankl M (1998) Calculation of the effective dose and its variation from environmental gamma ray sources. Health Phys 74:698–706

    Article  CAS  Google Scholar 

  2. Mehra R, Singh M (2011) Measurement of radioactivity of 238U, 226Ra, 232Th and 40K in soil of different geological origins in Northern India. J Environ Prot (Irvine, Calif) 02:960–966

    Article  CAS  Google Scholar 

  3. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation/United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Rep. I:1–17

  4. Ntsohi L, Usman I, Mavunda R, Kureba O (2021) Characterization of uranium in soil samples from a prospective uranium mining in Serule, Botswana for nuclear forensic application. J Radiat Res Appl Sci 14:23–33

    Article  CAS  Google Scholar 

  5. Saito K, Jacob P (1995) Gamma ray fields in the ari due to sources in the ground. Radiat Prot Dosimetry 58:29–45

    CAS  Google Scholar 

  6. Hertel NE, Eckerman KF, Bellamy MB, et al (2015) Federal Guidance Report 15: external exposure to radionuclides in soil, air, and water

  7. El-Galy MM, Issa FA, Desouky OA et al (2011) Use of alpha spectrometry for analysis of U-isotopes in some granite samples. J Radioanal Nucl Chem 288:805–811

    Article  CAS  Google Scholar 

  8. Cowan GA, Adler HH (1976) The variability of the natural abundance of 235U. Geochim Cosmochim Acta 40:1487–1490

    Article  CAS  Google Scholar 

  9. Jeambrun M, Pourcelot L, Mercat C et al (2012) Potential sources affecting the activity concentrations of 238U, 235U, 232Th and some decay products in lettuce and wheat samples. J Environ Monit 14:2902–2912

    Article  CAS  Google Scholar 

  10. Qiao J, Lagerkvist P, Rodushkin I et al (2018) On the application of ICP-MS techniques for measuring uranium and plutonium: a Nordic inter-laboratory comparison exercise. J Radioanal Nucl Chem 315:565–580

    Article  CAS  Google Scholar 

  11. Weyer S, Anbar AD, Gerdes A et al (2008) Natural fractionation of 238U/235U. Geochim Cosmochim Acta 72:345–359

    Article  CAS  Google Scholar 

  12. Mola M, Palomo M, Peñalver A et al (2013) Comparative study of different analytical methods for the determination of 238U, 234U, 235U, 230Th and 232Th in NORM samples (Southern Catalonia). J Environ Radioact 115:207–213

    Article  CAS  Google Scholar 

  13. García-Talavera M (2003) Evaluation of the suitability of various γ lines for the γ spectrometric determination of 238U in environmental samples. Appl Radiat Isot 59:165–173

    Article  Google Scholar 

  14. Papachristodoulou CA, Assimakopoulos PA, Patronis NE, Ioannides KG (2003) Use of HPGe γ-ray spectrometry to assess the isotopic compositiion of uranium in soils. J Environ Radioact 64:195–203

    Article  CAS  Google Scholar 

  15. Hasan M, Bódizs D, Czifrus S (2002) A simplified technique to determine the self-absorption correction for sediment samples. Appl Radiat Isot 57:915–918

    Article  CAS  Google Scholar 

  16. Lenka P, Jha SK, Gothankar S et al (2009) Suitable gamma energy for gamma-spectrometric determination of 238U in surface soil samples of a high rainfall area in India. J Environ Radioact 100:509–514

    Article  CAS  Google Scholar 

  17. Sutherland RA, De Jong E (1990) Statistical analysis of 7-emitting radionuclide concentrations for three fields in southern saskatchewan, canada. Health Phys 58:417–428

    Article  CAS  Google Scholar 

  18. Salman A, Ahmed Z, Allam K, El-Sharkawy S (2019) A comparative study for 235 U radioactivity concentration calculation methods in phosphate samples. Radiat Prot Environ 42:5. https://doi.org/10.4103/rpe.rpe_77_18

    Article  Google Scholar 

  19. Ebaid YY, El-Mongy SA, Allam KA (2005) 235U-γ emission contribution to the 186 keV energy transition of 226Ra in environmental samples activity calculations. Int Congr Ser 1276:409–411

    Article  Google Scholar 

  20. Dowdall M, Selnaes G, Gwynn JP, Davids C (2004) Simultaneous determination of 226Ra and 238U in soil and environmental materials by gamma-spectrometry in the absence of radium progeny equilibrium. J Radioanal Nucl Chem 261:513–521

    Article  CAS  Google Scholar 

  21. Ceccatelli A, Katona R, Kis-Benedek G, Pitois A (2014) Measurement of 226Ra in soil from oil field: advantages of γ-ray spectrometry and application to the IAEA-448 CRM. Appl Radiat Isot 87:461–467

    Article  CAS  Google Scholar 

  22. De Corte F, Umans H, Vandenberghe D et al (2005) Direct gamma-spectrometric measurement of the 226Ra 186.2keV line for detecting 238U/226Ra disequilibrium in determining the environmental dose rate for the luminescence dating of sediments. Appl Radiat Isot 63:589–598

    Article  Google Scholar 

  23. Yücel H, Çetiner M, Demirel H (1998) Use of the 1001keV peak of 234mPa daughter of 238U in measurement of uranium concentration by HPGe gamma-ray spectrometry. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 413:74–82

    Article  Google Scholar 

  24. Danesi PR, Bleise A, Burkart W et al (2003) Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo. J Environ Radioact 64:121–131. https://doi.org/10.1016/S0265-931X(02)00043-7

    Article  CAS  PubMed  Google Scholar 

  25. Boulyga SF, Testa C, Desideri D, Becker JS (2001) Optimisation and application of ICP-MS and alpha-spectrometry for determination of isotopic ratios of depleted uranium and plutonium in samples collected in Kosovo. J Anal At Spectrom 16:1283–1289

    Article  CAS  Google Scholar 

  26. Burns PA, Clarck DE, Claxton D, et al (1999) Technologies for remediation of radioactively contaminated sites. IAEA Tecdoc-1086 101

  27. Ko YG, Lim J-M, Chung KH, et al (2015) Alpha spectrometry for determination of 238U, 235U, 234U, 232Th and 230Th in Soil Sample. In: transactions of the Korean nuclear society spring meeting. Korean Nuclear Society

  28. Cheolu Kim, et. al. (2017) Environmental Radioactivity Survey in Korea, KINS/ER-28, Vol. 49

  29. Gilmore GR (2008) Practical gamma-ray spectrometry, 2nd edn. New York, Wiley

    Book  Google Scholar 

  30. Al-Tuweity J, Kamleh H, Said Al-Masri M, et al (2021) Determination of correction factor of self-absorption for lead-210 in environment samples using spike method. E3S Web Conf 234:1–4

  31. Jang E-S, Gim Y-S, Lee S-Y (2017) Marinelli beaker measurement and self absorption correction and application for various environmental samples in Monte Carlo simulation. J Radiol Sci Technol 40:605–611

    Article  Google Scholar 

  32. Currie LA (1984) Lower limit of detection : definition andi elaboration of a proposed position for radiological EHluent and environmental measurements. NUREG/CR-4007

  33. The International Organization for Standardization (ISO) (2010) Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation - Fundamentals and application. ISO-11929:2010(E) 60

  34. M.-M.Be, V.Chiste, C.Dulieu, et al (2010) Table of radionuclides (Vol. 5 - A = 22 to 244). Monogr. BIPM-5, vol.5. 5:7 to 12

  35. M.-M.Be, V.Chiste, C.Dulieu, et al (2011) Table of radionuclides (Vol. 6 – A = 22 to 242). Monogr. BIPM-5, vol.6. 6:306

  36. M.-M.Be, V.Chiste, C.Dulieu, et al (2008) Table of radionuclides (Vol. 4 – A = 133 to 252). Monogr. BIPM-5, Vol.4. 4:309

  37. Abusaleem K (2014) Nuclear data sheets for A = 228. Nucl Data Sheets 116:163–262

    Article  CAS  Google Scholar 

  38. Akovali YA (1993) Nuclear data sheets for A = 230. Nucl Data Sheets 69:155–208

    Article  CAS  Google Scholar 

  39. LaMont SP, Gehrke RJ, Glover SE, Filby RH (2001) Precise determination of the intensity of 226Ra alpha decay to the 186 keV excited state. J Radioanal Nucl Chem 248:247–253

    Article  CAS  Google Scholar 

  40. Huy NQ, Luyen TV (2004) A method to determine 238U activity in environmental soil samples by using 63.3-keV-photopeak-gamma HPGe spectrometer. Appl Radiat Isot 61:1419–1424

    Article  CAS  Google Scholar 

  41. Di Lella LA, Nannoni F, Protano G, Riccobono F (2005) Uranium contents and 235U/ 238U atom ratios in soil and earthworms in western Kosovo after the 1999 war. Sci Total Environ 337:109–118

    Article  Google Scholar 

  42. Stirling CH, Andersen MB, Potter EK, Halliday AN (2007) Low-temperature isotopic fractionation of uranium. Earth Planet Sci Lett 264:208–225

    Article  CAS  Google Scholar 

  43. Hiess J, Condon DJ, McLean N, Noble SR (2012) 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science (80- ) 335:1610 LP – 1614

  44. Student (1908) The probable error of a mean. Biometrika 6:1.

  45. Paiva JDS, Farias EEG, Franca EJ De (2015) Assessment of the equilibrium of Th-228 and Ra-228 by gamma-ray spectrometry in mangrove soils. In: INAC 2015: international nuclear atlantic conference Brazilian nuclear program State policy for a sustainable world

  46. Lim S, Syam NS, Maeng S, Lee SH (2021) Determination of 226Ra in TENORM sample considering Radon leakage correction. J Radiat Prot Res 46:127–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hoon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeng, S., Lee, H., Park, S. et al. A comparison of determination methods for uranium radioactivity in environmental soil samples using a gamma spectrometer. J Radioanal Nucl Chem 331, 2929–2938 (2022). https://doi.org/10.1007/s10967-022-08379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08379-x

Keywords

Navigation