Skip to main content
Log in

High-Amylose Corn Starch/Konjac Glucomannan Composite Films Incorporating Nano TiO2 and Pomegranate Peel Extract and Their Application as Coatings on Agaricus bisporus

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, active packaging films were developed by incorporating nano TiO2 and pomegranate peel extract (PPE) into high-amylose corn starch (HCS)/konjac glucomannan (KG) matrix for the first time. The aim of present work was to investigate the influence of nano TiO2 and PPE on physicochemical and functional properties of HCS/KG-based films. The films were characterized by XRD, FT-IR and SEM, and the tensile, antibacterial and antioxidant properties were evaluated. The results showed that the crystallinity of the composite films was increased and the microstructure was more uniform and dense after adding TiO2 and PPE, and the intermolecular hydrogen bonds were formed between TiO2, PPE, and film matrix. Incorporation of TiO2 and PPE significantly improved tensile properties and decreased water solubility and water vapor permeability of the composite films (p < 0.05). HCS/KG films incorporated with TiO2 and PPE presented remarkable antibacterial activity against Escherichia coli and Staphylococcus aureus, and exhibited strong antioxidant activity due to the polyphenol compounds in PPE. All films properties not only changed with the content of TiO2 and PPE, but also improved synergistically when they were added together. The developed composite films were used as coating for the preservation of Agaricus bisporus, and the weight, firmness and total soluble solids of A. bisporus were significantly maintained and browning was effectively inhibited during storage. Therefore, HCS/KG composite film/coating containing TiO2 and PPE has great potential as an attractive commercialization technology to ensure the quality and extend the shelf life of foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alizadeh-Sani M, Rhim J-W, Azizi-Lalabadi M, Hemmati-Dinarvand M, Ehsani A (2020) Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. Int J Biol Macromol 145:835–844

    Article  CAS  PubMed  Google Scholar 

  2. Asgher M, Qamar SA, Bilal M, Iqbal HMN (2020) Bio-based active food packaging materials: sustainable alternative to conventional petrochemical-based packaging materials. Food Res Int 137:109625

    Article  CAS  PubMed  Google Scholar 

  3. Saberi B, Thakur R, Vuong QV, Chockchaisawasdee S, Golding JB, Scarlett CJ et al (2016) Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind Crop Prod 86:342–352

    Article  CAS  Google Scholar 

  4. Samsalee N, Sothornvit R (2019) Development and characterization of porcine plasma protein-chitosan blended films. Food Packag Shelf Life 22:100406

    Article  Google Scholar 

  5. Kanatt SR, Makwana SH (2020) Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydr Polym 227:115303

    Article  CAS  PubMed  Google Scholar 

  6. Mohamed SAA, El-Sakhawy M, El-Sakhawy MA-M (2020) Polysaccharides, protein and lipid-based natural edible films in food packaging: a review. Carbohydr Polym 238:116178

    Article  CAS  PubMed  Google Scholar 

  7. Cano A, Jiménez A, Cháfer M, Gónzalez C, Chiralt A (2014) Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydr Polym 111:543–555

    Article  CAS  PubMed  Google Scholar 

  8. Menzel C, Andersson M, Andersson R, Vázquez-Gutiérrez JL, Daniel G, Langton M et al (2015) Improved material properties of solution-cast starch films: effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes. Carbohydr Polym 130:388–397

    Article  CAS  PubMed  Google Scholar 

  9. Liu W, Xue J, Cheng B, Zhu S, Ma Q, Ma H (2016) Anaerobic biodegradation, physical and structural properties of normal and high-amylose maize starch films. Int J Agric Biol Eng 9(5):184–193

    Google Scholar 

  10. Wang W, Wang K, Xiao J, Liu Y, Zhao Y, Liu A (2017) Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration. Int J Biol Macromol 94:258–265

    Article  CAS  PubMed  Google Scholar 

  11. Zou Y, Yuan C, Cui B, Sha H, Liu P, Lu L et al (2021) High-amylose corn starch/konjac glucomannan composite film: reinforced by incorporating β-cyclodextrin. J Agric Food Chem 69(8):2493–2500

    Article  CAS  PubMed  Google Scholar 

  12. Ning Y, Cui B, Yuan C (2020) Decreasing the digestibility of debranched corn starch by encapsulation with konjac glucomannan. Food Hydrocoll 107:105966

    Article  CAS  Google Scholar 

  13. Zou Y, Yuan C, Cui B, Liu P, Wu Z, Zhao H (2021) Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydr Polym 251:117039

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Zheng K, Chen H, Feng S, Wang W, Qin C (2019) Influence of nano titanium dioxide and clove oil on chitosan-starch film characteristics. Polymers 11(9):1418

    Article  CAS  PubMed Central  Google Scholar 

  15. Zhang X, Liu Y, Yong H, Qin Y, Liu J, Liu J (2019) Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocoll 94:80–92

    Article  CAS  Google Scholar 

  16. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  17. Ullattil SG, Narendranath SB, Pillai SC, Periyat P (2018) Black TiO2 nanomaterials: a review of recent advances. Chem Eng J 343:708–736

    Article  CAS  Google Scholar 

  18. Tang Y, Hu X, Zhang X, Guo D, Zhang J, Kong F (2016) Chitosan/titanium dioxide nanocomposite coatings: rheological behavior and surface application to cellulosic paper. Carbohydr Polym 151:752–759

    Article  CAS  PubMed  Google Scholar 

  19. Jbeli A, Ferraria AM, do Rego AMB, Boufi S, Bouattour S (2018) Hybrid chitosan-TiO2/ZnS prepared under mild conditions with visible-light driven photocatalytic activity. Int J Biol Macromol 116:1098–104

    Article  CAS  PubMed  Google Scholar 

  20. Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA (2014) Antimicrobial activity of TiO2 nanoparticle-coated film for potential food food packaging applications. Int J Photoenergy 2014:945930

    Article  Google Scholar 

  21. Shaili T, Abdorreza MN, Fariborz N (2015) Functional, thermal, and antimicrobial properties of soluble soybean polysaccharide biocomposites reinforced by nano TiO2. Carbohydr Polym 134:726–731

    Article  CAS  PubMed  Google Scholar 

  22. Hanani ZAN, Yee FC, Nor-Khaizura MAR (2019) Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll 89:253–259

    Article  CAS  Google Scholar 

  23. Ismail T, Sestili P, Akhtar S (2012) Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 143(2):397–405

    Article  CAS  PubMed  Google Scholar 

  24. Tayel AA, El-Baz AF, Salem MF, El-Hadary MH (2009) Potential applications of pomegranate peel extract for the control of citrus green mould. J Plant Dis Prot 116(6):252–256

    Article  CAS  Google Scholar 

  25. Fan J, Zhang ZH, Qin YY, Zhao TR, Cheng CS (2013) Characterization of antioxidant chitosan film incorporated with pomegranate peel extract. Adv Mater Res 706–708:24–27

    Google Scholar 

  26. Liu Y, Zhang X, Li C, Qin Y, Xiao L, Liu J (2020) Comparison of the structural, physical and functional properties of κ-carrageenan films incorporated with pomegranate flesh and peel extracts. Int J Biol Macromol 147:1076–1088

    Article  CAS  PubMed  Google Scholar 

  27. Zhang K, Pu Y-Y, Sun D-W (2018) Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): a review. Trends Food Sci Technol 78:72–82

    Article  CAS  Google Scholar 

  28. Vunduk J, Kozarski M, Djekic I, Tomašević I, Klaus A (2021) Effect of modified atmosphere packaging on selected functional characteristics of Agaricus bisporus. Eur Food Res Technol 247(4):829–838

    Article  CAS  Google Scholar 

  29. Gull A, Bhat N, Wani SM, Masoodi FA, Amin T, Ganai SA (2021) Shelf life extension of apricot fruit by application of nanochitosan emulsion coatings containing pomegranate peel extract. Food Chem 349:129149

    Article  CAS  PubMed  Google Scholar 

  30. Wang B, Sui J, Yu B, Yuan C, Guo L, Abd El-Aty AM et al (2021) Physicochemical properties and antibacterial activity of corn starch-based films incorporated with Zanthoxylum bungeanum essential oil. Carbohydr Polym 254:117314

    Article  CAS  PubMed  Google Scholar 

  31. Jiang L, Jia F, Han Y, Meng X, Xiao Y, Bai S (2021) Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr Polym 261:117877

    Article  CAS  PubMed  Google Scholar 

  32. Gao M, Feng L, Jiang T (2014) Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment. Food Chem 149:107–113

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Liu J, Yong H, Qin Y, Liu J, Jin C (2020) Development of antioxidant and antimicrobial packaging films based on chitosan and mangosteen (Garcinia mangostana L.) rind powder. Int J Biol Macromol 145:1129–1139

    Article  CAS  PubMed  Google Scholar 

  34. Ren L, Yan X, Zhou J, Tong J, Su X (2017) Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int J Biol Macromol 105:1636–1643

    Article  CAS  PubMed  Google Scholar 

  35. Namazi H, Dadkhah A (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79(3):731–737

    Article  CAS  Google Scholar 

  36. Zou Y, Yuan C, Cui B, Wang J, Yu B, Guo L et al (2021) Mechanical and antimicrobial properties of high amylose corn starch/konjac glucomannan composite film enhanced by cinnamaldehyde/β-cyclodextrin complex. Ind Crop Prod 170:113781

    Article  CAS  Google Scholar 

  37. Zhang W, Li X, Jiang W (2020) Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple. Int J Biol Macromol 154:1205–1214

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Du M, Liu H, Zhang K, Xu X, Liu K et al (2021) Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Prog Org Coat 151:106103

    Article  CAS  Google Scholar 

  39. Qin Y, Liu Y, Yuan L, Yong H, Liu J (2019) Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocoll 96:102–111

    Article  CAS  Google Scholar 

  40. Yong H, Wang X, Zhang X, Liu Y, Qin Y, Liu J (2019) Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocoll 94:93–104

    Article  CAS  Google Scholar 

  41. Cheng S-Y, Wang B-J, Weng Y-M (2015) Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT 63(1):115–121

    Article  CAS  Google Scholar 

  42. Wang B, Yan S, Gao W, Kang X, Yu B, Liu P et al (2021) Antibacterial activity, optical, and functional properties of corn starch-based films impregnated with bamboo leaf volatile oil. Food Chem 357:129743

    Article  CAS  PubMed  Google Scholar 

  43. Daglia M (2012) Polyphenols as antimicrobial agents. Cur Opin Biotechnol 23(2):174–181

    Article  CAS  Google Scholar 

  44. Zhu Z, Cai H, Sun D-W (2018) Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci Technol 75:23–35

    Article  CAS  Google Scholar 

  45. Liu J, Meng C-g, Wang X-c, Chen Y, Kan J, Jin C-h (2016) Effect of protocatechuic acid-grafted-chitosan coating on the postharvest quality of Pleurotus eryngii. J Agric Food Chem 64(38):7225–7233

    Article  CAS  PubMed  Google Scholar 

  46. Tahir HE, Xiaobo Z, Mahunu GK, Arslan M, Abdalhai M, Zhihua L (2019) Recent developments in gum edible coating applications for fruits and vegetables preservation: a review. Carbohydr Polym 224:115141

    Article  CAS  PubMed  Google Scholar 

  47. Jia X, Li J, Du M, Zhao Z, Song J, Yang W et al (2020) Combination of low fluctuation of temperature with TiO2 photocatalytic/ozone for the quality maintenance of postharvest peach. Foods 9(2):234

    Article  CAS  PubMed Central  Google Scholar 

  48. Xing Y, Yang H, Guo X, Bi X, Liu X, Xu Q et al (2020) Effect of chitosan/nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Sci Hortic 263:109135

    Article  CAS  Google Scholar 

  49. Lei J, Li B, Zhang N, Yan R, Guan W, Brennan CS et al (2018) Effects of UV-C treatment on browning and the expression of polyphenol oxidase (PPO) genes in different tissues of Agaricus bisporus during cold storage. Postharvest Biol Technol 139:99–105

    Article  CAS  Google Scholar 

  50. Jiang L, Luo Z, Liu H, Wang F, Li H, Gao H et al (2021) Preparation and characterization of chitosan films containing lychee (Litchi chinensis Sonn.) pericarp powder and their application as active food packaging. Foods 10(11):2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science Foundation Project of Heilongjiang Province (C2018026), the Food Source-based Functional Active Packaging Discipline Team of Northeast Agricultural University (54941112), Talent Training Project Supported by the Central Government for the Reform and Development of Local Colleges and Universities in 2021 (ZYZCDFGX202115), the “Young Talents” Project of Northeast Agricultural University, China (20QC11) and the Opening Project of Key Laboratory of Soybean Biology of Chinese Education Ministry (SBKF05).

Funding

This work was financially supported by the Science Foundation Project of Heilongjiang Province (Grant No. C2018026), the Food Source-based Functional Active Packaging Discipline Team of Northeast Agricultural University (Grant No. 54941112), Talent Training Project Supported by the Central Government for the Reform and Development of Local Colleges and Universities in 2021 (Grant No. ZYZCDFGX202115), “Young Talents” Project of Northeast Agricultural University (Grant No. 20QC11), the Opening Project of Key Laboratory of Soybean Biology of Chinese Education Ministry (Grant No. SBKF05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajiang Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wang, F., Xie, C. et al. High-Amylose Corn Starch/Konjac Glucomannan Composite Films Incorporating Nano TiO2 and Pomegranate Peel Extract and Their Application as Coatings on Agaricus bisporus. J Polym Environ 30, 4550–4561 (2022). https://doi.org/10.1007/s10924-022-02498-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02498-y

Keywords

Navigation