Skip to main content

Advertisement

Log in

Extensive Capabilities of Additive Manufacturing and Its Metrological Aspects

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Today, additive manufacturing (AM) is employed in various sectors, including aerospace, automobiles, healthcare, architecture, toys, arts and design, construction, etc. The AM used a set of technologies like 3D printing, 3D scanning, and designing, scanning, and printing software. 3D printing technologies are used to build 3D objects from computer-aided design models by layering material on top of material until a genuine part is formed. It is anticipated that AM will significantly impact manufacturing and, ultimately, on all of our lives. However, a sustained research effort into AM metrology is required to make the manufacturing revolution a reality. Tolerance and quality control methods must be in place for AM processes, starting with offline metrology and progressing to closed-loop control utilising inline metrology. This paper discusses the various significant capabilities of AM with their metrological aspects. Furthermore, several crucial industrial prospects of AM for measurement systems are discussed briefly. Finally, the paper discusses the significant features of inspection and quality control. A reliable methodology for the metrological assessment of AM parts would be highly advantageous in expanding AM’s utility. As a result of the extensive literature evaluation, the current study will assist students, engineers, designers, manufacturers, and metrologists in identifying research gaps and potential for the field’s progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T.F. Murphy and C.T. Schade, Measurement of powder characteristics and quality for additive manufacturing in aerospace alloys. Addit. Manuf. Aerosp. Ind. (2019) 99–142.

  2. A.J. Dunbar, E.R. Denlinger, J. Heigel, P. Michaleris, P. Guerrier, R. Martukanitz and T.W. Simpson, Development of an experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit. Manuf., 12 (2016) 25–30.

    Google Scholar 

  3. S. Rab, S. Yadav, N. Garg et al., Evolution of measurement system and SI units in India. MAPAN, 35 (2020) 475–490. https://doi.org/10.1007/s12647-020-00400-6.

    Article  Google Scholar 

  4. C. Liu, R.R. Wang, Z.J. Kong, S. Babu, C. Joslin and J. Ferguson, Real-time 3D surface measurement in additive manufacturing using deep learning. In Solid freeform fabrication 2019: proceedings of the 30th annual international, solid freeform fabrication symposium—an additive manufacturing conference, (2019) pp. 225–237.

  5. A. Lopez, R. Bacelar, I. Pires, T.G. Santos, J.P. Sousa and L. Quintino, Nondestructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit. Manuf., 21 (2018) 298–306.

    Google Scholar 

  6. A. Varshney, N. Garg, K.S. Nagla et al., Challenges in sensors technology for industry 4.0 for futuristic metrological applications. MAPAN-J. Metrol. Soc India, 36 (2021) 215–226. https://doi.org/10.1007/s12647-021-00453-1.

    Article  Google Scholar 

  7. B.N. Panda, A. Garg and K. Shankhwar, Empirical investigation of environmental characteristics of the 3-D additive manufacturing process based on slice thickness and part orientation. Measurement, 86 (2016) 293–300.

    Article  ADS  Google Scholar 

  8. F. Montevecchi, G. Venturini, N. Grossi, A. Scippa and G. Campatelli, Idle time selection for wire-arc additive manufacturing: a finite element-based technique. Addit. Manuf., 21 (2018) 479–486.

    Google Scholar 

  9. F. Azarmi and I. Sevostianov, Evaluation of the residual stresses in metallic materials produced by additive manufacturing technology: effect of microstructure. Curr. Opin. Chem. Eng., 28 (2020) 21–27.

    Article  Google Scholar 

  10. H. Prajapati, D. Ravoori, R.L. Woods and A. Jain, Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Addit. Manuf., 21 (2018) 84–90.

    Google Scholar 

  11. J. Bennett, Measuring UV curing parameters of commercial photopolymers used in additive manufacturing. Addit. Manuf., 18 (2017) 203–212.

    Google Scholar 

  12. L.A. Northcutt, S.V. Orski, K.B. Migler and A.P. Kotula, Effect of processing conditions on crystallisation kinetics during materials extrusion additive manufacturing. Polymer, 154 (2018) 182–187.

    Article  Google Scholar 

  13. H. Choudhary, D. Vaithiyanathan and H. Kumar, A review on additive manufactured sensors. MAPAN, 36 (2021) 405–422. https://doi.org/10.1007/s12647-020-00399-w.

    Article  Google Scholar 

  14. S. Moscato, R. Bahr, T. Le, M. Pasian, M. Bozzi, L. Perregrini and M.M. Tentzeris, Additive manufacturing of 3D substrate integrated waveguide components. Electron. Lett., 51 (2015) 1426–1428.

    Article  ADS  Google Scholar 

  15. R. Kumar, S. Rab, B.D. Pant et al., FEA-based design studies for development of diaphragm force transducers. MAPAN-J. Metrol. Soc India, 34 (2019) 179–187. https://doi.org/10.1007/s12647-018-0292-2.

    Article  Google Scholar 

  16. M.P. Hong, K. Woo-Sung, S. Ji-Hyun, K. Dong-Hyuk, K.M. Bae and K. Young-Suk, High-performance, eco-friendly trimming die manufacturing using heterogeneous material additive manufacturing technologies. Int. J. Precis. Eng. Manuf. Green Technol., 5 (2018) 133–142.

    Article  Google Scholar 

  17. J.M. Nadal-Serrano, A. Nadal-Serrano and M. Lopez-Vallejo, Democratising science with the aid of parametric design and additive manufacturing: design and fabrication of a versatile and low-cost optical instrument for scattering measurement. PLoS One, 12 (2017) e0187219.

    Article  Google Scholar 

  18. D. Tyralla and T. Seefeld, Advanced process monitoring in additive manufacturing: in-process temperature field measurement for laser metal deposition and laser powder bed fusion processes. PhotonicsViews, 17 (2020) 60–63.

    Article  Google Scholar 

  19. K.L.M. Avegnon, P. Noll, M.R. Uddin, G. Madireddy, R.E. Williams, A. Achuthan and M.P. Sealy, Use of energy consumption during milling to fill a measurement gap in hybrid additive manufacturing. Addit. Manuf., 46 (2021) 102167.

    Google Scholar 

  20. I. Khan, A. Mateus, C.S.K. Lorger and G.R. Mitchell, Part specific applications of additive manufacturing. Procedia Manuf., 12 (2017) 89–95.

    Article  Google Scholar 

  21. H. Nagamatsu, H. Sasahara, Y. Mitsutake and T. Hamamoto, Development of a cooperative system for wire and arc additive manufacturing and machining. Addit. Manuf., 31 (2020) 100896.

    Google Scholar 

  22. Z. Zhu, K. Ferreira, N. Anwer, L. Mathieu, K. Guo and L. Qiao, Convolutional neural network for geometric deviation prediction in additive manufacturing. Procedia Cirp, 91 (2020) 534–539.

    Article  Google Scholar 

  23. V. Renken, S. Albinger, G. Goch, A. Neef and C. Emmelmann, Development of an adaptive, self-learning control concept for an additive manufacturing process. CIRP J. Manuf. Sci. Technol., 19 (2017) 57–61.

    Article  Google Scholar 

  24. Z.Y. Chua, I.H. Ahn and S.K. Moon, Process monitoring and inspection systems in metal additive manufacturing: status and applications. Int. J. Precis. Eng. Manuf. Green Technol., 4 (2017) 235–245.

    Article  Google Scholar 

  25. D.A. Kai, E.P. De Lima, M.W.M. Cunico and S.E.G. Da Costa, Measure additive manufacturing for sustainable manufacturing. In ISPE TE, (2016) pp. 186–195.

  26. J.A. Slotwinski, E.J. Garboczi, P.E. Stutzman, C.F. Ferraris, S.S. Watson and M.A. Peltz, Characterisation of metal powders used for additive manufacturing. J. Res. Natl. Inst. Stand. Technol., 119 (2014) 460.

    Article  Google Scholar 

  27. A. Unkovskiy, S. Spintzyk, D. Axmann, E.M. Engel, H. Weber and F. Huettig, Additive manufacturing: a comparative analysis of dimensional accuracy and skin texture reproduction of auricular prostheses replicas. J. Prosthodont., 28 (2019) e460–e468.

    Article  Google Scholar 

  28. J. Ning, M. Praniewicz, W. Wang, J.R. Dobbs and S.Y. Liang, Analytical modeling of part distortion in metal additive manufacturing. Int. J. Adv. Manuf. Technol., 107 (2020) 49–57.

    Article  Google Scholar 

  29. O. Quénard, O. Dorival, P. Guy, A. Votié and K. Brethome, Measurement of fracture toughness of metallic materials produced by additive manufacturing. CEAS Space J., 10 (2018) 343–353.

    Article  ADS  Google Scholar 

  30. N. Senin, A. Thompson and R.K. Leach, Characterisation of the topography of metal additive surface features with different measurement technologies. Meas. Sci. Technol., 28 (2017) 095003.

    Article  ADS  Google Scholar 

  31. P. Hagqvist, A. Heralić, A.K. Christiansson and B. Lennartson, Resistance based iterative learning control of additive manufacturing with wire. Mechatronics, 31 (2015) 116–123.

    Article  Google Scholar 

  32. S. Afazov, A. Okioga, A. Holloway, W. Denmark, A. Triantaphyllou, S.A. Smith and L. Bradley-Smith, A methodology for precision additive manufacturing through compensation. Precis. Eng., 50 (2017) 269–274.

    Article  Google Scholar 

  33. J. Gockel, L. Sheridan, B. Koerper and B. Whip, The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int. J. Fatigue, 124 (2019) 380–388.

    Article  Google Scholar 

  34. M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond and R. Hague, Transparency built-in: energy consumption and cost estimation for additive manufacturing. J. Ind. Ecol., 17 (2013) 418–431.

    Article  Google Scholar 

  35. M. Heinl, T. Laumer, F. Bayer and T. Hausotte, Temperature-dependent optical material properties of polymer powders regarding in-situ measurement techniques in additive manufacturing. Polym. Test., 71 (2018) 378–383.

    Article  Google Scholar 

  36. J. Bartolai, A.E. Wilson-Heid, J.R. Kruse, A.M. Beese and T.W. Simpson, Full field strain measurement of material extrusion additive manufacturing parts with solid and sparse infill geometries. JOM, 71 (2019) 871–879.

    Article  Google Scholar 

  37. J. Lee, S. Park, K.H. Shin and H. Jung, Smearing defects: a root cause of register measurement error in roll-to-roll additive manufacturing system. Int. J. Adv. Manuf. Technol., 98 (2018) 3155–3165.

    Article  Google Scholar 

  38. K. Ozawa, H.W. Wang, T. Yoshino and N. Tsuboi, Time-resolved fuel regression measurement function of a hybrid rocket solid fuel integrated by multi-material additive manufacturing. Acta Astronautica, 187 (2021) 89–100.

    Article  ADS  Google Scholar 

  39. M.Y. Kayacan and N. Yılmaz, An investigation on the measurement of instantaneous temperatures in laser-assisted additive manufacturing by thermal imagers. Measurement, 160 (2020) 107825.

    Article  Google Scholar 

  40. Z. Yin and J. Xiong, Stereovision measurement of layer geometry in wire and arc additive manufacturing with various stereo matching algorithms. J. Manuf. Process., 56 (2020) 428–438.

    Article  Google Scholar 

  41. A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos and W.E. King, An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall. Mater. Trans. A, 45 (2014) 6260–6270.

    Article  Google Scholar 

  42. P. Liu, K. Yi, I. Jeon and H. Sohn, Porosity inspection in directed energy deposition additive manufacturing based on transient thermoreflectance measurement. NDT & E Int., 122 (2021) 102491.

    Article  Google Scholar 

  43. M. Javaid and A. Haleem, Additive manufacturing applications in medical cases: a literature-based review. Alex. J. Med., 54 (2018) 411–422.

    Google Scholar 

  44. S. Adamczak, J. Bochnia and B. Kaczmarska, An analysis of tensile test results to assess the innovation risk for an additive manufacturing technology. Metrol. Meas. Syst., 22 (2015) 127–138.

    Article  Google Scholar 

  45. M. Javaid and A. Haleem, Current status and applications of additive manufacturing in dentistry: a literature-based review. J. Oral Biol. Craniofac. Res., 9 (2019) 179–185.

    Article  Google Scholar 

  46. J.A. Slotwinski and E.J. Garboczi, Metrology needs for metal additive manufacturing powders. Jom, 67 (2015) 538–543.

    Article  Google Scholar 

  47. B. Gapinski, P. Janicki, L. Marciniak-Podsadna and M. Jakubowicz, Application of the computed tomography to control parts made on additive manufacturing process. Procedia Eng., 149 (2016) 105–121.

    Article  Google Scholar 

  48. L. Du, Y. Lai, C. Luo, Y. Zhang, J. Zheng, X. Ge and Y. Liu, E-quality control in dental metal additive manufacturing inspection using 3D scanning and 3D measurement. Front. Bioeng. Biotechnol., 8 (2020) 1038.

    Article  Google Scholar 

  49. G. Bi, C.N. Sun and A. Gasser, Study on influential factors for process monitoring and control in laser aided additive manufacturing. J. Mater. Process. Technol., 213 (2013) 463–468.

    Article  Google Scholar 

  50. D. Ravoori, C. Lowery, H. Prajapati and A. Jain, Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion-based additive manufacturing. Polym. Test., 73 (2019) 439–446.

    Article  Google Scholar 

  51. Y. Lu, G. Sun, X. Xiao and J. Mazumder, Online stress measurement during laser-aided metallic additive manufacturing. Sci. Rep., 9 (2019) 1–11.

    Google Scholar 

  52. L. Newton, N. Senin, C. Gomez, R. Danzl, F. Helmli, L. Blunt and R. Leach, Areal topography measurement of metal additive surfaces using focus variation microscopy. Addit. Manuf., 25 (2019) 365–389.

    Google Scholar 

  53. A. Du Plessis, P. Sperling, A. Beerlink, O. Kruger, L. Tshabalala, S. Hoosain and S.G. Le Roux, Standard method for microCT-based additive manufacturing quality control 3: surface roughness. MethodsX, 5 (2018) 1111–1116.

    Article  Google Scholar 

  54. M. Shi, J. Xiong, G. Zhang and S. Zheng, Monitoring process stability in GTA additive manufacturing based on vision sensing of arc length. Measurement, 185 (2021) 110001.

    Article  Google Scholar 

  55. C. Hartmann, P. Lechner, B. Himmel, Y. Krieger, T.C. Lueth and W. Volk, Compensation for geometrical deviations in additive manufacturing. Technologies, 7 (2019) 83.

    Article  Google Scholar 

  56. A. Du Plessis, I. Yadroitsev, I. Yadroitsava and S.G. Le Roux, X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications. 3D Print. Addit. Manuf., 5 (2018) 227–247.

    Article  Google Scholar 

  57. M. Lerchen, J. Schinn and T. Hausotte, Referencing of powder bed for in situ detection of lateral layer displacements in additive manufacturing. J. Sens. Sens. Syst., 10 (2021) 247–259.

    Article  ADS  Google Scholar 

  58. N. Ducoulombier, P. Carneau, R. Mesnil, L. Demont, J.F. Caron and N. Roussel, “The Slug Test”: inline assessment of yield stress for extrusion-based additive manufacturing. In RILEM international conference on concrete and digital fabrication; Springer, Cham, (2020) pp. 216–224.

  59. J.C. Fox, S.P. Moylan and B.M. Lane, Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia Cirp, 45 (2016) 131–134.

    Article  Google Scholar 

  60. Z. Liu, T. Li, H. Kim, W. Cong, Q. Jiang and H.C. Zhang, Recent advances and current developments of molten pool temperature measurement for laser additive manufacturing processes. Recent Patents Mech. Eng., 13 (2020) 13–23.

    Article  Google Scholar 

  61. A.J. Allen, I. Levin and S.E. Witt, Materials research & measurement needs for ceramics additive manufacturing. J. Am. Ceram. Soc. Am. Ceram. Soc., 103 (2020) 6055–6069.

    Article  Google Scholar 

  62. B. Whip, L. Sheridan and J. Gockel, The effect of primary processing parameters on surface roughness in laser powder bed additive manufacturing. Int. J. Adv. Manuf. Technol., 103 (2019) 4411–4422.

    Article  Google Scholar 

  63. B. Sagbas, T.H. Boyacı and N.M. Durakbasa, Precision metrology for additive manufacturing. In The international symposium for production research; Springer, Cham, (2018) pp. 324–332.

  64. K. Yuasa, M. Tagami, M. Yonehara, T.T. Ikeshoji, K. Takeshita, H. Aoki and H. Kyogoku, Influences of powder characteristics and recoating conditions on surface morphology of powder bed in metal additive manufacturing. Int. J. Adv. Manuf. Technol., 115 (2021) 1–14.

    Article  Google Scholar 

  65. M.D. Monzón, Z. Ortega, A. Martínez and F. Ortega, Standardisation in additive manufacturing: activities carried out by international organisations and projects. Int. J. Adv. Manuf. Technol., 76 (2015) 1111–1121.

    Article  Google Scholar 

  66. A. Davoudinejad, L.C. Diaz-Perez, D. Quagliotti, D.B. Pedersen, J.A. Albajez-García, J.A. Yagüe-Fabra and G. Tosello, Additive manufacturing with vat polymerisation method for precision polymer micro-components production. Procedia CIRP, 75 (2018) 98–102.

    Article  Google Scholar 

  67. T.G. Spears and S.A. Gold, In-process sensing in selective laser melting (SLM) additive manufacturing. Integr. Mater. Manuf. Innov., 5 (2016) 16–40.

    Article  Google Scholar 

  68. N. Gutiérrez, P. Galvín and F. Lasagni, Low weight additive manufacturing FBG accelerometer: design, characterisation and testing. Measurement, 117 (2018) 295–303.

    Article  ADS  Google Scholar 

  69. C. Li, Z.Y. Liu, X.Y. Fang and Y.B. Guo, Residual stress in metal additive manufacturing. Procedia Cirp, 71 (2018) 348–353.

    Article  Google Scholar 

  70. M. Hirsch, R. Patel, W. Li, G. Guan, R.K. Leach, S.D. Sharples and A.T. Clare, Assessing the capability of in-situ nondestructive analysis during layer-based additive manufacture. Addit. Manuf., 13 (2017) 135–142.

    Google Scholar 

  71. J.C. Heigel, P. Michaleris and E.W. Reutzel, Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit. Manuf., 5 (2015) 9–19.

    Google Scholar 

  72. J.A. Slotwinski, E.J. Garboczi and K.M. Hebenstreit, Porosity measurements and analysis for metal additive manufacturing process control. J. Res. Natl. Inst. Stand. Technol., 119 (2014) 494.

    Article  Google Scholar 

  73. C. Mehdi-Souzani, A. Piratelli-Filho and N. Anwer, Comparative study for the metrological characterisation of additive manufacturing artefacts. In Advances on mechanics, design engineering and manufacturing; Springer, Cham, (2017) pp. 191–200.

  74. F. Lopez, P. Witherell and B. Lane, Identifying uncertainty in laser powder bed fusion additive manufacturing models. J. Mech. Des., 138 (2016) 114502.

    Article  Google Scholar 

  75. M. Rank and A. Heinrich, Measurement and use of the refractive index distribution in optical elements created by additive manufacturing. In Advanced fabrication technologies for micro/nano optics and photonics XII; International Society for Optics and Photonics, (2019) Vol. 10930, p. 109300Z.

  76. X. Zhao and D.W. Rosen, Real-time interferometric monitoring and measuring of photopolymerisation based stereolithographic additive manufacturing process: sensor model and algorithm. Meas. Sci. Technol., 28 (2016) 015001.

    Article  ADS  Google Scholar 

  77. D. Li, R. Liu and X. Zhao, Overview of in-situ temperature measurement for metallic additive manufacturing: how and then what. In 2019 Proceedings of 30th annual international solid freeform fabrication, (2019) pp. 1596–1610.

  78. J.E. Seppala and K.D. Migler, Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf., 12 (2016) 71–76.

    Google Scholar 

  79. B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop and K. Chou, Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing. J. Manuf. Process., 32 (2018) 744–753.

    Article  Google Scholar 

  80. J. Xiao, N. Anwer, A. Durupt, J. Le Duigou and B. Eynard, Information exchange standards for design, tolerancing and ADDITIVE MANUFACTURINg: a research review. Int. J. Interact. Des. Manuf. (IJIDeM), 12 (2018) 495–504.

    Article  Google Scholar 

  81. B. Wu, Z. Pan, D. Ding, D. Cuiuri and H. Li, Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit. Manuf., 23 (2018) 151–160.

    Google Scholar 

  82. M.K. Thompson and M. Mischkot, Design of test parts to characterise micro additive manufacturing processes. Procedia CIRP, 34 (2015) 223–228.

    Article  Google Scholar 

  83. Z. Li, X. Liu, S. Wen, P. He, K. Zhong, Q. Wei and S. Liu, In situ 3D monitoring of geometric signatures in the powder-bed-fusion additive manufacturing process via vision sensing methods. Sensors, 18 (2018) 1180.

    Article  ADS  Google Scholar 

  84. V.M.R. Santos, A. Thompson, D. Sims-Waterhouse, I. Maskery, P. Woolliams and R. Leach, Design and characterisation of an additive manufacturing benchmarking artefact following a design-for-metrology approach. Addit. Manuf., 32 (2020) 100964.

    Google Scholar 

  85. J. Clayton, Optimising metal powders for additive manufacturing. Met. Powder Rep., 69 (2014) 14–17.

    Article  Google Scholar 

  86. W. Tato, L. Blunt, I. Llavori, A. Aginagalde, A. Townsend and A. Zabala, Surface integrity of additive manufacturing parts: a comparison between optical topography measuring techniques. Procedia CIRP, 87 (2020) 403–408.

    Article  Google Scholar 

  87. I. Setien, M. Chiumenti, S. van der Veen, M. San Sebastian, F. Garciandía and A. Echeverría, Empirical methodology to determine inherent strains in additive manufacturing. Comput. Math. Appl., 78 (2019) 2282–2295.

    Article  MathSciNet  MATH  Google Scholar 

  88. J. Xiong, Y.J. Li, Z.Q. Yin and H. Chen, Determination of surface roughness in wire and arc additive manufacturing based on laser vision sensing. Chin. J. Mech. Eng., 31 (2018) 1–7.

    Article  Google Scholar 

  89. M. Kalms, R. Narita, C. Thomy, F. Vollertsen and R.B. Bergmann, New approach to evaluate 3D laser-printed parts in powder bed fusion-based additive manufacturing inline within closed space. Addit. Manuf., 26 (2019) 161–165.

    Google Scholar 

  90. A. Triantaphyllou, C.L. Giusca, G.D. Macaulay, F. Roerig, M. Hoebel, R.K. Leach and K.A. Milne, Surface texture measurement for additive manufacturing. Surf. Topogr. Metrol. Prop., 3 (2015) 024002.

    Article  ADS  Google Scholar 

  91. M. Mani, B.M. Lane, M.A. Donmez, S.C. Feng and S.P. Moylan, A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int. J. Prod. Res., 55 (2017) 1400–1418.

    Article  Google Scholar 

  92. E. Keita, H. Bessaies-Bey, W. Zuo, P. Belin and N. Roussel, Weak bond strength between successive layers in extrusion-based additive manufacturing: measurement and physical origin. Cem. Concr. Res., 123 (2019) 105787.

    Article  Google Scholar 

  93. A. Haleem and M. Javaid, 3D printed medical parts with different materials using additive manufacturing. Clin. Epidemiol. Glob. Health, 8 (2020) 215–223.

    Article  Google Scholar 

  94. S. Adamczak, J. Bochnia and B. Kaczmarska, Estimating the uncertainty of tensile strength measurement for a photocured material produced by additive manufacturing. Metrol. Meas. Syst., 21 (2014) 553–560.

    Article  Google Scholar 

  95. J. Xiong and G. Zhang, Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Meas. Sci. Technol., 24 (2013) 115103.

    Article  ADS  Google Scholar 

  96. M. Mani, K.W. Lyons and S.K. Gupta, Sustainability characterisation for additive manufacturing. J. Res. Natl. Inst. Stand. Technol., 119 (2014) 419.

    Article  Google Scholar 

  97. A. Du Plessis, P. Sperling, A. Beerlink, L. Tshabalala, S. Hoosain, N. Mathe and S.G. Le Roux, Standard method for microCT-based additive manufacturing quality control 2: Density measurement. MethodsX, 5 (2018) 1117–1123.

    Article  Google Scholar 

  98. N. Hoye, H.J. Li, D. Cuiuri and A.M. Paradowska, Measurement of residual stresses in titanium aerospace components formed via additive manufacturing. In Materials science forum; Trans Tech Publications Ltd., (2014) Vol. 777, pp. 124–129.

  99. C. Gomez, R. Su, A. Thompson, J. DiSciacca, S. Lawes and R.K. Leach, Optimisation of surface measurement for metal additive manufacturing using coherence scanning interferometry. Opt. Eng., 56 (2017) 111714.

    Article  ADS  Google Scholar 

  100. M. Salmi, K.S. Paloheimo, J. Tuomi, J. Wolff and A. Mäkitie, Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Cranio-Maxillofac. Surg., 41 (2013) 603–609.

    Article  Google Scholar 

  101. U. Ali, Y. Mahmoodkhani, S.I. Shahabad, R. Esmaeilizadeh, F. Liravi, E. Sheydaeian and E. Toyserkani, On the measurement of relative powder-bed compaction density in powder-bed additive manufacturing processes. Mater. Des., 155 (2018) 495–501.

    Article  Google Scholar 

  102. J. Xiong, G. Liu and Y. Pi, Increasing stability in robotic GTA-based additive manufacturing through optical measurement and feedback control. Robot. Comput. Integr. Manuf., 59 (2019) 385–393.

    Article  Google Scholar 

  103. G. D’Emilia, A. Di Ilio, A. Gaspari, E. Natale, R. Perilli and A.G. Stamopoulos, The role of measurement and simulation in additive manufacturing within the frame of Industry 40. In 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4. 0&IoT); IEEE, (2019) (pp. 382–387).

  104. S. Daneshmand and C. Aghanajafi, Description and modeling of the additive manufacturing technology for aerodynamic coefficients measurement. Strojniški vestnik-J. Mech. Eng., 58 (2012) 125–133.

    Article  Google Scholar 

  105. G. Jacob, A. Donmez, J. Slotwinski and S. Moylan, Measurement of powder bed density in powder bed fusion additive manufacturing processes. Meas. Sci. Technol., 27 (2016) 115601.

    Article  ADS  Google Scholar 

  106. K. An, L. Yuan, L. Dial, I. Spinelli, A.D. Stoica and Y. Gao, Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing. Mater. Des., 135 (2017) 122–132.

    Article  Google Scholar 

  107. Y. Zhan, C. Liu, J. Zhang, G. Mo and C. Liu, Measurement of residual stress in laser additive manufacturing TC4 titanium alloy with the laser ultrasonic technique. Mater. Sci. Eng. A, 762 (2019) 138093.

    Article  Google Scholar 

  108. Y. Mahmoodkhani, U. Ali, S.I. Shahabad, A.R. Kasinathan, R. Esmaeilizadeh, A. Keshavarzkermani and E. Toyserkani, On the measurement of effective powder layer thickness in laser powder-bed fusion additive manufacturing of metals. Prog. Addit. Manuf., 4 (2019) 109–116.

    Article  Google Scholar 

  109. X. Zhao and D.W. Rosen, A data mining approach in real-time measurement for polymer additive manufacturing process with exposure controlled projection lithography. J. Manuf. Syst., 43 (2017) 271–286.

    Article  Google Scholar 

  110. H. Prajapati, D. Ravoori and A. Jain, Measurement and modeling of filament temperature distribution in the standoff gap between nozzle and bed in polymer-based additive manufacturing. Addit. Manuf., 24 (2018) 224–231.

    Google Scholar 

  111. N. Vorkapic, M. Pjevic, M. Popovic, N. Slavkovic and S. Zivanovic, An additive manufacturing benchmark artifact and deviation measurement method. J. Mech. Sci. Technol., 34 (2020) 3015–3026.

    Article  Google Scholar 

  112. A. Thompson, I. Maskery and R.K. Leach, X-ray computed tomography for additive manufacturing: a review. Meas. Sci. Technol., 27 (2016) 072001.

    Article  ADS  Google Scholar 

  113. R. Leach, Metrology for additive manufacturing. Meas. Control, 49 (2016) 132–135.

    Article  Google Scholar 

  114. S. Srivastava, R.K. Garg, V.S. Sharma and A. Sachdeva, Measurement and mitigation of residual stress in wire-arc additive manufacturing: a review of macro-scale continuum modelling approach. Arch. Comput. Methods Eng., 28 (2020) 1–25.

    Google Scholar 

  115. H. Prajapati, S.S. Salvi, D. Ravoori and A. Jain, Measurement of the in-plane temperature field on the build plate during polymer extrusion additive manufacturing using infrared thermometry. Polym. Test., 92 (2020) 106866.

    Article  Google Scholar 

  116. Z. Sun, W. Guo and L. Li, In-process measurement of melt pool cross-sectional geometry and grain orientation in a laser directed energy deposition additive manufacturing process. Opt. Laser Technol., 129 (2020) 106280.

    Article  Google Scholar 

  117. M. Bordron, C. Mehdi-Souzani and O. Bruneau, Inline measurement strategy for additive manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 233 (2019) 1402–1411.

    Article  Google Scholar 

  118. X. Wang, A. Wang and Y. Li, An online surface height measurement method for GTAW-based additive manufacturing. Weld. World, 64 (2020) 11–20.

    Article  Google Scholar 

  119. J.C. Heigel, P. Michaleris and T.A. Palmer, Measurement of forced surface convection in directed energy deposition additive manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 230 (2016) 1295–1308.

    Article  Google Scholar 

  120. M.A. de Pastre, S.C.T. Tagne and N. Anwer, Test artefacts for additive manufacturing: a design methodology review. CIRP J. Manuf. Sci. Technol., 31 (2020) 14–24.

    Article  Google Scholar 

  121. A. Townsend, R. Racasan and L. Blunt, Surface-specific additive manufacturing test artefacts. Surf. Topogr. Metrol. Prop., 6 (2018) 024007.

    Article  ADS  Google Scholar 

  122. R.K. Leach, D. Bourell, S. Carmignato, A. Donmez, N. Senin and W. Dewulf, Geometrical metrology for metal additive manufacturing. CIRP Ann., 68 (2019) 677–700.

    Article  Google Scholar 

  123. L. Fieber, S.S. Bukhari, Y. Wu and P.S. Grant, Inline measurement of the dielectric permittivity of materials during additive manufacturing and 3D data reconstruction. Addit. Manuf., 32 (2020) 101010.

    Google Scholar 

  124. J. Xiong, Y. Liu and Z. Yin, Passive vision measurement for robust reconstruction of molten pool in wire and arc additive manufacturing. Measurement, 153 (2020) 107407.

    Article  Google Scholar 

  125. A. Townsend, N. Senin, L. Blunt, R.K. Leach and J.S. Taylor, Surface texture metrology for metal additive manufacturing: a review. Precis. Eng., 46 (2016) 34–47.

    Article  Google Scholar 

  126. X. Peng, L. Kong, Y. Chen, J. Wang and M. Xu, A preliminary study of in-situ defects measurement for additive manufacturing based on multi-spectrum. In 9th International symposium on advanced optical manufacturing and testing technologies: subdiffraction-limited plasmonic lithography and innovative manufacturing technology; International Society for Optics and Photonics, (2019) Vol. 10842, p. 1084217.

  127. F. Pixner, R. Buzolin, S. Schönfelder, D. Theuermann, F. Warchomicka and N. Enzinger, Contactless temperature measurement in wire-based electron beam additive manufacturing Ti–6Al–4V. Weld. World, 65 (2021) 1307–1322.

    Article  Google Scholar 

  128. K. Zhang, W. Zhang, R. Brune, E. Herderick, X. Zhang, J. Cornell and J. Forsmark, Numerical simulation and experimental measurement of pressureless sintering of stainless steel part printed by Binder Jetting Additive Manufacturing. Addit. Manuf., 47 (2021) 102330.

    Google Scholar 

  129. W.P. Syam, R. Leach, K. Rybalcenko, A. Gaio and J. Crabtree, In-process measurement of the surface quality for a novel finishing process for polymer additive manufacturing. Procedia CIRP, 75 (2018) 108–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanay Rab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javaid, M., Haleem, A., Singh, R.P. et al. Extensive Capabilities of Additive Manufacturing and Its Metrological Aspects. MAPAN 37, 707–720 (2022). https://doi.org/10.1007/s12647-022-00568-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-022-00568-z

Keywords

Navigation