Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase

Abstract

Although flavin-dependent halogenases (FDHs) are attractive for C–H bond activation, their applications are limited due to low turnover and stability. We have previously shown that leakage of a halogenating intermediate, hypohalous acid (HOX), causes FDHs to be inefficient by lessening halogenation yield. Here we employed a mechanism-guided semi-rational approach to engineer the intermediate transfer tunnel connecting two active sites of tryptophan 6-halogenase (Thal). This Thal-V82I variant generates less HOX leakage and possesses multiple catalytic improvements such as faster halogenation, broader substrate utilization, and greater thermostability and pH tolerance compared with the wildtype Thal. Stopped-flow and rapid quench kinetics analyses indicated that rate constants of halogenation and flavin oxidation are faster for Thal-V82I. Molecular dynamics simulations revealed that the V82I substitution introduces hydrophobic interactions which regulate tunnel dynamics to accommodate HOX and cause rearrangement of water networks, allowing better use of various substrates than the wildtype. Our approach demonstrates that an in-depth understanding of reaction mechanisms is valuable for improving efficiency of FDHs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism-guided engineering approach to increase efficiency of a FDH.
Fig. 2: A tunnel connecting the two active sites of Thal and engineering results.
Fig. 3: Enzymatic properties of Thal-V82I compared with Thal-WT.
Fig. 4: Molecular dynamics simulations explain the decrease of HOBr leakage in Thal-V82I.
Fig. 5: Transient kinetics analysis of individual steps of Thal-WT and Thal-V82I.
Fig. 6: A wide substrate scope for Thal-V82I.

Similar content being viewed by others

Data availability

The initial structures and snapshots of molecular dynamics simulations are given as Supplementary Data and available at https://github.com/N-Lawan/Flavin-dependent-halogenase.git. The data supporting the findings of this study are available within the article and its Supplementary Information or can be obtained from the corresponding author on reasonable request.

References

  1. Weichold, V., Milbredt, D. & van Pée, K.-H. Specific enzymatic halogenation—from the discovery of halogenated enzymes to their applications in vitro and in vivo. Angew. Chem. Int. Ed. 55, 6374–6389 (2016).

    Article  CAS  Google Scholar 

  2. Gkotsi, D. S. et al. A marine viral halogenase that iodinates diverse substrates. Nat. Chem. 11, 1091–1097 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Durak, L. J., Payne, J. T. & Lewis, J. C. Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS Catal. 6, 1451–1454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Latham, J. et al. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 7, 11873 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Craven, E. J. et al. Programmable late-stage C−H bond functionalization enabled by integration of enzymes with chemocatalysis. Nat. Catal. 4, 385–394 (2021).

    Article  CAS  Google Scholar 

  6. Phintha, A., Prakinee, K. & Chaiyen, P. in The Enzymes Vol. 47 (eds Chaiyen, P. & Tamanoi, F.) 327–364 (Academic, 2020).

  7. Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Andorfer, M. C. & Lewis, J. C. Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis. Annu. Rev. Biochem. 87, 159–185 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Payne, J. T., Poor, C. B. & Lewis, J. C. Directed evolution of RebH for site-selective halogenation of large biologically active molecules. Angew. Chem. Int. Ed. 54, 4226–4230 (2015).

    Article  CAS  Google Scholar 

  10. Shepherd, S. A. et al. Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes. Chem. Sci. 6, 3454–3460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poor, C. B., Andorfer, M. C. & Lewis, J. C. Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution. ChemBioChem 15, 1286–1289 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Minges, H. et al. Targeted enzyme engineering unveiled unexpected patterns of halogenase stabilization. ChemCatChem 12, 818–831 (2020).

    Article  CAS  Google Scholar 

  13. Kokkonen, P., Bednar, D., Pinto, G., Prokop, Z. & Damborsky, J. Engineering enzyme access tunnels. Biotechnol. Adv. 37, 107386 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Büchler, J., Papadopoulou, A. & Buller, R. Recent advances in flavin-dependent halogenase biocatalysis: sourcing, engineering, and application. Catalysts 9, 1030 (2019).

    Article  CAS  Google Scholar 

  15. Phintha, A. et al. Dissecting the low catalytic capability of flavin-dependent halogenases. J. Biol. Chem. 296, 100068 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Mondal, D., Fisher, B. F., Jiang, Y. & Lewis, J. C. Flavin-dependent halogenases catalyze enantioselective olefin halocyclization. Nat. Commun. 12, 3268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Banerjee, R. & Lipscomb, J. D. Small-molecule tunnels in metalloenzymes viewed as extensions of the active site. Acc. Chem. Res. 54, 2185–2195 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, C. et al. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science 309, 2216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flecks, S. et al. New insights into the mechanism of enzymatic chlorination of tryptophan. Angew. Chem. Int. Ed. 47, 9533–9536 (2008).

    Article  CAS  Google Scholar 

  20. Stourac, J. et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res. 47, W414–W422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeh, E., Blasiak, L. C., Koglin, A., Drennan, C. L. & Walsh, C. T. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46, 1284–1292 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ainsley, J. et al. Structural insights from molecular dynamics simulations of tryptophan 7-halogenase and tryptophan 5-halogenase. ACS Omega 3, 4847–4859 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaushik, S. et al. Impact of the access tunnel engineering on catalysis is strictly ligand-specific. FEBS J. 285, 1456–1476 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Ridder, L., Mulholland, A. J., Rietjens, I. M. C. M. & Vervoort, J. A quantum mechanical/molecular mechanical study of the hydroxylation of phenol and halogenated derivatives by phenol hydroxylase. J. Am. Chem. Soc. 122, 8728–8738 (2000).

    Article  CAS  Google Scholar 

  25. Karabencheva-Christova, T. G., Torras, J., Mulholland, A. J., Lodola, A. & Christov, C. Z. Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase. Sci. Rep. 7, 17395 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Moritzer, A.-C. et al. Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. J. Biol. Chem. 294, 2529–2542 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Luhavaya, H., Sigrist, R., Chekan, J. R., McKinnie, S. M. K. & Moore, B. S. Biosynthesis of l-4-chlorokynurenine, an antidepressant prodrug and a non-proteinogenic amino acid found in lipopeptide antibiotics. Angew. Chem. Int. Ed. 58, 8394–8399 (2019).

    Article  CAS  Google Scholar 

  28. Menon, B. R. K. et al. Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes. Org. Biomol. Chem. 14, 9354–9361 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lingkon, K. & Bellizzi Iii, J. J. Structure and activity of the thermophilic tryptophan-6 halogenase BorH. ChemBioChem 21, 1121–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Zehner, S. et al. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem. Biol. 12, 445–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Seibold, C. et al. A flavin-dependent tryptophan 6-halogenase and its use in modification of pyrrolnitrin biosynthesis. Biocatal. Biotransform. 24, 401–408 (2006).

    Article  CAS  Google Scholar 

  32. Yeh, E. et al. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry 45, 7904–7912 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Minges, H. & Sewald, N. Recent advances in synthetic application and engineering of halogenases. ChemCatChem 12, 4450–4470 (2020).

    Article  CAS  Google Scholar 

  34. Pimviriyakul, P. & Chaiyen, P. in The Enzymes Vol. 47 (eds Chaiyen, P. & Tamanoi, F.) 1–36 (Academic, 2020).

  35. Sucharitakul, J., Chaiyen, P., Entsch, B. & Ballou, D. P. Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii*. J. Biol. Chem. 281, 17044–17053 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Pimviriyakul, P., Thotsaporn, K., Sucharitakul, J. & Chaiyen, P. Kinetic mechanism of the dechlorinating flavin-dependent monooxygenase HadA*. J. Biol. Chem. 292, 4818–4832 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prongjit, M., Sucharitakul, J., Wongnate, T., Haltrich, D. & Chaiyen, P. Kinetic mechanism of pyranose 2-oxidase from Trametes multicolor. Biochemistry 48, 4170–4180 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Granik, V. G., Graevskaya, I. P. & Ryabova, S. Y. Heterocyclization of 2-indolinone derivatives (a review). Pharm. Chem. J. 31, 646–662 (1997).

    Article  Google Scholar 

  39. Andorfer, M. C. et al. Understanding flavin-dependent halogenase reactivity via substrate activity profiling. ACS Catal. 7, 1897–1904 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Agarwal, V. et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 10, 640–647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mori, S., Pang, A. H., Thamban Chandrika, N., Garneau-Tsodikova, S. & Tsodikov, O. V. Unusual substrate and halide versatility of phenolic halogenase PltM. Nat. Commun. 10, 1255 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Menon, B. R. K. et al. RadH: a versatile halogenase for integration into synthetic pathways. Angew. Chem. Int. Ed. 56, 11841–11845 (2017).

    Article  CAS  Google Scholar 

  43. Markova, K. et al. Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem. Sci. 11, 11162–11178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taylor, M. G. & Massey, V. Decay of the 4a-hydroxy-FAD intermediate of phenol hydroxylase. J. Biol. Chem. 265, 13687–13694 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Schnepel, C., Minges, H., Frese, M. & Sewald, N. A high-throughput fluorescence assay to determine the activity of tryptophan halogenases. Angew. Chem. Int. Ed. 55, 14159–14163 (2016).

    Article  CAS  Google Scholar 

  46. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Prim. 1, 46 (2021).

    Article  CAS  Google Scholar 

  47. Yi, D. et al. Recent trends in biocatalysis. Chem. Soc. Rev. 50, 8003–8049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Intasian, P. et al. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 121, 10367–10451 (2021).

  49. Jurcik, A. et al. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics 34, 3586–3588 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. PyMOL: Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 1.8 (2015).

  52. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Santos-Aberturas, J., Dörr, M. & Bornscheuer, U. T. in Protein Engineering: Methods and Protocols (eds Bornscheuer, U. T. & Höhne, M.) 157–170 (Springer, 2018).

  54. Sullivan, B., Walton, A. Z. & Stewart, J. D. Library construction and evaluation for site saturation mutagenesis. Enzym. Microb. Technol. 53, 70–77 (2013).

    Article  CAS  Google Scholar 

  55. Maenpuen, S. et al. Creating flavin reductase variants with thermostable and solvent-tolerant properties by rational-design engineering. ChemBioChem 21, 1481–1491 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  59. Pongpamorn, P. et al. Identification of a hotspot residue for improving the thermostability of a flavin-dependent monooxygenase. ChemBioChem 20, 3020–3031 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Thailand Science Research Innovation and NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation (grant no. B05F640089) and the Royal Academy of Engineering (for their support to P. Chaiyen), the Vidyasirimedhi Institute of Science and Technology (VISTEC) (for their support to K.P., A.P., S.V., C.K. and P. Chaiyen), the Thailand Science Research Innovation and National Research Council of Thailand (Royal Golden Jubilee PHD/0135/2557 grant to A. P. and P. Chaiyen) and Chiang Mai University for partial support to N. Lawan. We acknowledge the VISTEC-NSTDA fellowship (to C. Kantiwiriyawanitch, P. Chaiyen and P. Chitnumsub), and thank the Czech Ministry of Education for financial support to J. Damborsky (grant nos. CZ.02.1.01/0.0/0.0/16_026/0008451 and LM2018121). We thank S. Maenpuen (Burapha University) for providing stopped-flow and rapid-quench flow technical support, and V. Pongsupasa (VISTEC) for providing a thermostable C1-A58P enzyme for the thermostability assays. We thank U. Bornscheuer and M. Dörr (University of Greifswald) for valuable advice related to enzyme engineering procedures. We thank S. Ketrat, S. Nutanong and School of Information Science and Technology, VISTEC for computing facilities. The figures were created using materials from PyMOL and BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

K.P., A.P. and P. Chaiyen conceived and designed the study. A.P., S.V. and K.P. performed the tunnel analysis and rational design of enzyme engineering. K.P. and A.P. conducted the library creation and screening. K.P., A.P. and C.K. performed protein production and purification, and enzymatic assays. K.P. and A.P. performed the transient kinetics experiments with contributions from J.S. N.L. performed the computational analysis. S.V., K.P. and N.L. analysed the molecular dynamics simulations. S.V., N.L., J.S., J.D., P. Chitnumsub, and K.-H.v.P., analysed data and reviewed the manuscript. K.P., A.P. and P. Chaiyen prepared the manuscript.

Corresponding author

Correspondence to Pimchai Chaiyen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Roland Ludwig, Christian Schnepel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Table 1, Figs. 1–57 and References.

Reporting Summary

Supplementary Data 1

Initial structure molecular dynamics of WT.

Supplementary Data 2

Molecular dynamics snapshot of WT_400K at 4 ns.

Supplementary Data 3

Initial structure molecular dynamics of V82I.

Supplementary Data 4

Molecular dynamics snapshot of V82I_400K at 4 ns.

Supplementary Data 5

Initial structure molecular dynamics of WT_HOBr.

Supplementary Data 6

Molecular dynamics snapshot of WT_HOBr at 19.4 ns.

Supplementary Data 7

Initial structure molecular dynamics of V82I_HOBr.

Supplementary Data 8

Molecular dynamics snapshot of V82I_HOBr at 19.4 ns.

Supplementary Data 9

Molecular dynamics snapshot of V82I_HOBr at 102 ns.

Supplementary Data 10

Initial structure molecular dynamics of WT_Phenol.

Supplementary Data 11

Molecular dynamics snapshot of WT_Phenol at 8 ns.

Supplementary Data 12

Initial structure molecular dynamics of V82I_Phenol.

Supplementary Data 13

Molecular dynamics snapshot of V82I_Phenol at 8 ns.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakinee, K., Phintha, A., Visitsatthawong, S. et al. Mechanism-guided tunnel engineering to increase the efficiency of a flavin-dependent halogenase. Nat Catal 5, 534–544 (2022). https://doi.org/10.1038/s41929-022-00800-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00800-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing