Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries

Subjects

Abstract

Catalytic conversion of polysulfides is regarded as a crucial approach to enhancing kinetics and suppressing the shuttle effect in lithium–sulfur (Li–S) batteries. However, the activity prediction of Li–S catalysts remains elusive owing to the lack of mechanistic understanding of activity descriptors. Here, we report a volcano-shaped relationship between polysulfide adsorption ability and catalytic activity. In conjunction with theoretical analysis, we distinguish catalytic and anchoring effects to delineate the role of adsorption and emphasize the passivation of catalysts. These findings enable us to develop a composite catalyst, Co0.125Zn0.875S, which shows higher performance than simple binary compounds. Such a fundamental understanding of the intrinsic link between polysulfide adsorption and catalytic activity offers a rational viewpoint for designing Li–S catalysts and tuning their activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of catalyst design.
Fig. 2: Catalyst design and activity characterizations.
Fig. 3: Mechanistic studies on catalytic processes.
Fig. 4: Kinetic analysis of polysulfide conversion on catalyst surface.
Fig. 5: Electrochemical properties of Li–S batteries using M0.125Zn0.875S catalysts.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the authors upon reasonable request.

References

  1. Pu, J. et al. Electrodeposition technologies for Li-based batteries: new frontiers of energy storage. Adv. Mater. 32, 1903808 (2019).

    Article  CAS  Google Scholar 

  2. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Chu, H. et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 10, 188 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pang, Q. et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).

    Article  CAS  Google Scholar 

  5. Pu, J. et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 10, 1896 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Jin, X. et al. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode. Energy Storage Mater. 31, 221–229 (2020).

    Article  Google Scholar 

  7. Sun, Z. et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gao, X. et al. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium–sulfur batteries. Nano Lett. 20, 5496–5503 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, L. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano 14, 8495–8507 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Baumann, A. E., Han, X., Butala, M. M. & Thoi, V. S. Lithium thiophosphate functionalized zirconium MOFs for Li–S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 141, 17891–17899 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, L. et al. To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium–sulfur battery. Nano Energy 77, 105173 (2020).

    Article  CAS  Google Scholar 

  12. Wang, Z.-Y., Wang, L., Liu, S., Li, G.-R. & Gao, X.-P. Conductive CoOOH as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite for lithium–sulfur battery. Adv. Funct. Mater. 29, 1901051 (2019).

    Article  CAS  Google Scholar 

  13. Wu, W. et al. Biomimetic bipolar microcapsules derived from Staphylococcus aureus for enhanced properties of lithium–sulfur battery cathodes. Adv. Energy Mater. 8, 1702373 (2018).

    Article  CAS  Google Scholar 

  14. Yang, X. et al. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries. Adv. Mater. 31, 1901220 (2019).

    Article  CAS  Google Scholar 

  15. Wang, Z. et al. Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium–sulfur batteries. Adv. Mater. 31, 1902228 (2019).

    Article  CAS  Google Scholar 

  16. Yao, Y. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li–S full batteries. Adv. Mater. 32, 1905658 (2019).

    Article  CAS  Google Scholar 

  17. Wang, R. et al. Highly dispersed cobalt clusters in nitrogen‐doped porous carbon enable multiple effects for high‐performance Li–S battery. Adv. Energy Mater. 10, 1903550 (2020).

    Article  CAS  Google Scholar 

  18. Zhou, G. M. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. Proc. Natl Acad. Sci. USA 114, 840–845 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Z., Kong, L.-L., Liu, S., Li, G.-R. & Gao, X.-P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium–sulfur battery. Adv. Energy Mater. 7, 1602543 (2017).

    Article  CAS  Google Scholar 

  20. Lin, H. et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries. Energy Environ. Sci. 10, 1476–1486 (2017).

    Article  CAS  Google Scholar 

  21. Al Salem, H., Babu, G., Rao, C. V. & Arava, L. M. R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J. Am. Chem. Soc. 137, 11542–11545 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H. et al. A lithium-sulfur battery with a solution-mediated pathway operating under lean electrolyte conditions. Nano Energy 76, 105041 (2020).

    Article  CAS  Google Scholar 

  23. Peng, L. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 3, 762–770 (2020).

    Article  CAS  Google Scholar 

  24. Xue, W. et al. Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019).

    Article  CAS  Google Scholar 

  25. Wang, Y. et al. Enhancing catalytic activity of titanium oxide in lithium–sulfur batteries by band engineering. Adv. Energy Mater. 9, 1900953 (2019).

    Article  CAS  Google Scholar 

  26. Zhou, J. et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2, 2681–2693 (2018).

    Article  CAS  Google Scholar 

  27. Seo, S. D., Park, D., Park, S. & Kim, D. W. “Brain‐coral‐like” mesoporous hollow CoS2@N‐doped graphitic carbon nanoshells as efficient sulfur reservoirs for lithium–sulfur batteries. Adv. Funct. Mater. 29, 1903712 (2019).

    Article  CAS  Google Scholar 

  28. Pu, J. et al. Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37, 7–14 (2017).

    Article  CAS  Google Scholar 

  29. Liu, Y. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li‐S batteries. Adv. Funct. Mater. 30, 2002462 (2020).

    Article  CAS  Google Scholar 

  30. Kitchin, J. R., Norskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y. et al. Hierarchical defective Fe3-xC@C hollow microsphere enables fast and long-lasting lithium–sulfur batteries. Adv. Funct. Mater. 30, 2001165 (2020).

    Article  CAS  Google Scholar 

  32. Shen, Z. et al. Efficient Ni2Co4P3 nanowires catalysts enhance ultrahigh-loading lithium–sulfur conversion in a microreactor-like battery. Adv. Funct. Mater. 30, 1906661 (2020).

    Article  CAS  Google Scholar 

  33. Shen, Z. et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium–sulfur batteries. ACS Nano 14, 6673–6682 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, J. et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium–sulfur batteries. ACS Nano 13, 8986–8996 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, R. et al. Bidirectional catalysts for liquid–solid redox conversion in lithium–sulfur batteries. Adv. Mater. 32, 2000315 (2020).

    Article  CAS  Google Scholar 

  36. Li, R. et al. Sandwich-like catalyst–carbon–catalyst trilayer structure as a compact 2D host for highly stable lithium–sulfur batteries. Angew. Chem. Int. Ed. 59, 12129–12138 (2020).

    Article  CAS  Google Scholar 

  37. Zhou, D. et al. Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 59, 2–12 (2020).

    Article  CAS  Google Scholar 

  38. Ye, H., Li, M., Liu, T., Li, Y. & Lu, J. Activating Li2S as the lithium-containing cathode in lithium–sulfur batteries. ACS Energy Lett. 5, 2234–2245 (2020).

    Article  CAS  Google Scholar 

  39. Zeng, P. et al. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium–sulfur batteries. ACS Nano 14, 11558–11569 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, W., Wang, D., Wang, G., Zheng, M. & Wang, G. Elastic, conductive coating layer for self‐standing sulfur cathode achieving long lifespan Li–S batteries. Adv. Energy Mater. 10, 1904026 (2020).

    Article  CAS  Google Scholar 

  41. Zhang, D. et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high‐rate lithium–sulfur batteries. Adv. Funct. Mater. 30, 2002471 (2020).

    Article  CAS  Google Scholar 

  42. Luo, L., Li, J., Asl, H. Y. & Manthiram, A. In-situ assembled VS4 as a polysulfide mediator for high-loading lithium–sulfur batteries. ACS Energy Lett. 5, 1177–1185 (2020).

    Article  CAS  Google Scholar 

  43. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  44. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Wei, T.-R. et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science 369, 542–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Schubert, B., Avouris, P. & Hoffmann, R. A theoretical study of the initial stages of Si(111)-7×7 oxidation. II. The dissociated state and formation of SiO4. J. Chem. Phys. 98, 7606–7612 (1993).

    Article  CAS  Google Scholar 

  47. van Santen, R. A., Neurock, M. & Shetty, S. G. Reactivity theory of transition-metal surfaces: a Brønsted–Evans–Polanyi linear activation energy–free-energy analysis. Chem. Rev. 110, 2005–2048 (2010).

    Article  PubMed  CAS  Google Scholar 

  48. Cheng, J. et al. Brønsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C. 112, 1308–1311 (2008).

    Article  CAS  Google Scholar 

  49. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    Article  CAS  Google Scholar 

  50. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Key Research and Development Program of China (2020YFA0406104) and the National Natural Science Foundation of China (22075131). The numerical calculations were carried out at the computing facilities in the High-Performance Computing Center (HPCC) of Nanjing University. Work at Argonne National Laboratory was supported by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office under the US-China Clean Energy Research Center (CERC-CVC2) programme. Argonne National Laboratory is operated for the DOE Office of Science by UChicago Argonne, LLC, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and Z.S. conceived the idea and designed the project. Z.S., X.J. and J.T. performed the catalyst synthesis and carried out the electrochemical experiments. Z.S., M.L., Y.Y. and S.Z. conducted the morphology and structural characterizations. Z.S., H.Z. and X.J. conducted the DFT calculations and microkinetic modelling. S.F., X.F., W.X. and H.L. assisted with the the ex situ Raman measurements and analysed the spectra. H.Z. and J.L. supervised the project and wrote the manuscript. All authors analysed the data and discussed the results.

Corresponding authors

Correspondence to Jun Lu or Huigang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Mahbub Islam, Harry Hoster and Qianfan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1–4 and Notes 1–4.

Supplementary Video 1

TEM size analysis.

Supplementary Data 1

Atomic coordinates in the used models

Source data

Source Data Fig. 2

Electrochemical data.

Source Data Fig. 3

UV–vis spectra and calculation results.

Source Data Fig. 4

Modelling results.

Source Data Fig. 5

Electrochemical data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Jin, X., Tian, J. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat Catal 5, 555–563 (2022). https://doi.org/10.1038/s41929-022-00804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00804-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing