Skip to main content

Advertisement

Log in

First-principles study of InxGa1-xAs1-yPy with different compositions

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Methods

The bulk properties of InxGa1-xAs1-yPy at different In and P compositions are calculated using the first-principles methods.

Results

The bandgap of InxGa1-xAs1-yPy is theoretically calculated and the formula is given. The calculated bandgap change of InxGa1-xAs1-yPy is consistent with the theoretical value, which indicates that the calculation parameters are reasonable.

Conclusion

When the In and P compositions are equally increased, the bandgap change of InxGa1-xAs1-yPy is no longer monotonic, and the closer the In and P compositions approach 0.6, the narrower the bandgap is. When the incident photon energy is low, an increase in In composition leads to a redshift in dielectric function peak and this is conducive to long-wavelength absorption, while an increase in P composition causes a blueshift. As the incident photon energy increases, InxGa1-xAs1-yPy exhibits strong metal reflection characteristics in a certain energy range. With increasing In or P composition, the energy loss increases, and the larger the In composition, the greater the shift of the energy loss peak to the high-energy side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vergara, G., Gómez, L.J., Capmany, J., Montojo, M.T.: Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes. Vacuum 48, 155–160 (1997). https://doi.org/10.1016/S0042-207X(96)00234-5

    Article  ADS  Google Scholar 

  2. Blankemeier, L., Rezaeifar, F., Garg, A., Kapadia, R.: Integrated photonics for low transverse emittance, ultrafast negative electron affinity GaAs photoemitters. J. Appl. Phys. 126, 33102 (2019). https://doi.org/10.1063/1.5093938

    Article  Google Scholar 

  3. André, J.P., Guittard, P., Hallais, J., Piaget, C.: GaAs photocathodes for low light level imaging. J. Cryst. Growth. 55, 235–245 (1981). https://doi.org/10.1016/0022-0248(81)90293-1

    Article  ADS  Google Scholar 

  4. Somvanshi, D., Chauhan, D., Lao, Y., Perera, A.G.U., Li, L., Khanna, S.P., Linfield, E.H.: Analysis of extended threshold wavelength photoresponse in nonsymmetrical p-GaAs/AlGaAs heterostructure photodetectors. IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018). https://doi.org/10.1109/JSTQE.2017.2773622

    Article  Google Scholar 

  5. Adachi, S.: III-V ternary and quaternary compounds. In: Kasap, S., Capper, P. (eds.) Springer Handbook of electronic and photonic materials, pp. 735–752. Springer, US, Boston, MA (2007). https://doi.org/10.1007/978-0-387-29185-7_31

    Chapter  Google Scholar 

  6. Singh, A.K., Rathi, A., Riyaj, M., Bhardwaj, G., Alvi, P.A.: Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain. Superlattices. Microstruct. 111, 591–602 (2017). https://doi.org/10.1016/j.spmi.2017.07.014

    Article  ADS  Google Scholar 

  7. James, L.W., Antypas, G.A., Moon, R.L., Edgecumbe, J., Bell, R.L.: Photoemission from cesium-oxide-activated InGaAsP. Appl. Phys. Lett. 22, 270–271 (1973). https://doi.org/10.1063/1.1654634

    Article  ADS  Google Scholar 

  8. Escher, J.S., Antypas, G.A., Edgecumbe, J.: High-quantum-efficiency photoemission from an InGaAsP photocathode. Appl. Phys. Lett. 29, 153–155 (1976). https://doi.org/10.1063/1.89005

    Article  ADS  Google Scholar 

  9. Dolia, R., Bhardwaj, G., Singh, A.K., Kumar, S., Alvi, P.A.: Optimization of type-II ‘W’ shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature. Superlattices. Microstruct. 112, 507–516 (2017). https://doi.org/10.1016/j.spmi.2017.10.007

    Article  ADS  Google Scholar 

  10. Nirmal, H.K., Yadav N., Dalela S., Rathi A., Siddiqui M.J., Alvi P.A. Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure. Phys. E Low-Dimen. Syst. Nanostruct 80, 36–42 (2016) 10.1016j.spmi.2016.08.048

  11. Singh, A.K., Riyaj, M., Anjum, S.G., Yadav, N., Rathi, A., Siddiqui, M.J., Alvi, P.A.: Anisotropy and optical gain improvement in type-II In0.3Ga0.7As/GaAs0.4Sb0.6 nano-scale heterostructure under external uniaxial strain. Superlattices. Microstruct. 98, 406–415 (2016). https://doi.org/10.1016/j.spmi.2016.08.048

    Article  ADS  Google Scholar 

  12. Yadav, R., Lal, P., Rahman, F., Dalela, S., Alvi, P.A.: Investigation of material gain of In0.90Ga0.10As0.59P0.41/InP Lasing nano-heterostructure. Int. J. Mod. Phys. B. 28, 1450068 (2014). https://doi.org/10.1142/S0217979214500684

    Article  ADS  Google Scholar 

  13. Yadav, R., Sharma, D.M., Jha, S., Lal, P., Siddiqui, M., Dalela, S., Alvi, D.P.: Investigation of gain characteristics of GRIN-InGaAsP/InP nano-heterostructure. Indian J. Pure Appl. Phys. 53, 447–455 (2015)

    Google Scholar 

  14. Clark, S., Segall, M., Pickard, C., Hasnip, P., Probert, M., Refson, K., Payne, M.: First principles methods using CASTEP. Zeitschrift. Für. Krist. (2005). https://doi.org/10.1524/zkri.220.5.567.65075

    Article  Google Scholar 

  15. Bacuyag, D., Escaño, M.C.S., David, M., Tani, M.: First-principles study of structural, electronic, and optical properties of surface defects in GaAs(001)-β2(2x4). AIP Adv. 8, 65012 (2018). https://doi.org/10.1063/1.5020188

    Article  Google Scholar 

  16. Ma, D., Cheng, J., Zhang, J., Cao, Y., Li, E.: The influence of the Cu doping position on GaAs: first-principles calculations. Mater. Today Commun. 25, 101549 (2020). https://doi.org/10.1016/j.mtcomm.2020.101549

    Article  Google Scholar 

  17. Williams, C.K., Glisson, T.H., Hauser, J.R., Littlejohn, M.A.: Energy bandgap and lattice constant contours of III-V quaternary alloys of the form AxByCzD or ABxCyDz. J. Electron. Mater. 7, 639–646 (1978). https://doi.org/10.1007/bf02655439

    Article  ADS  Google Scholar 

  18. Onton, A., Chicotka, R.J.: Luminescence study of the electronic band structure of Inl-xGaxAsl-yPy. In: Williams, F., Baron, B., Martens, M., Varma, S.P. (eds.) Luminescence of crystals, molecules, and solutions, pp. 431–438. Springer, US, Boston, MA (1973). https://doi.org/10.1007/978-1-4684-2043-2_58

    Chapter  Google Scholar 

  19. Rouzhahong, Y., Wushuer, M., Mamat, M., Wang, Q., Wang, Q.: First principles calculation for photocatalytic activity of GaAs monolayer. Sci. Rep. 10, 9597 (2020). https://doi.org/10.1038/s41598-020-66575-9

    Article  ADS  Google Scholar 

  20. Tit, N., Amrane, N., Reshak, A.: Bandgap characters in GaAs-based ternary alloys. Cryst. Res. Technol. 45, 59–69 (2010). https://doi.org/10.1002/crat.200900454

    Article  Google Scholar 

  21. Prasad, B., Saini, L., Sharma, R.: Electronic and optical properties of GaAs bilayer. Macromol. Symp. (2017). https://doi.org/10.1002/masy.201600208

    Article  Google Scholar 

  22. Huang, J., Lu, A., Zhao, B., Wan, Q.: Branched growth of degenerately Sb-doped SnO2 nanowires. Appl. Phys. Lett. 91, 73102 (2007). https://doi.org/10.1063/1.2769756

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the National Natural Science Foundation of China (Grant No. 61971386), Public Welfare project of Ningbo City (202002N3139, 2019C10051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junju Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Zhang, J. et al. First-principles study of InxGa1-xAs1-yPy with different compositions. Opt Rev 29, 287–297 (2022). https://doi.org/10.1007/s10043-022-00742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00742-3

Keywords

Navigation