Skip to main content

Advertisement

Log in

PET/CT imaging of CSF1R in a mouse model of tuberculosis

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Macrophages represent an essential means of sequestration and immune evasion for Mycobacterium tuberculosis. Pulmonary tuberculosis (TB) is characterized by dense collections of tissue-specific and recruited macrophages, both of which abundantly express CSF1R on their outer surface. 4-Cyano-N-(5-(1-(dimethylglycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide (JNJ-28312141) is a reported high affinity, CSF1R-selective antagonist. We report the radiosynthesis of 4-cyano-N-(5-(1-(N-methyl-N-([11C]methyl)glycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide ([11C]JNJ-28312141) and non-invasive detection of granulomatous and diffuse lesions in a mouse model of TB using positron emission tomography (PET).

Methods

Nor-methyl-JNJ-28312141 precursor was radiolabeled with [11C]iodomethane to produce [11C]JNJ-28312141. PET/CT imaging was performed in the C3HeB/FeJ murine model of chronic pulmonary TB to co-localize radiotracer uptake with granulomatous lesions observed on CT. Additionally, CSF1R, Iba1 fluorescence immunohistochemistry was performed to co-localize CSF1R target with reactive macrophages in infected and healthy mice.

Results

Radiosynthesis of [11C]JNJ-28312141 averaged a non-decay-corrected yield of 18.7 ± 2.1%, radiochemical purity of 99%, and specific activity averaging 658 ± 141 GBq/µmol at the end-of-synthesis. PET/CT imaging in healthy mice showed hepatobiliary [13.39–25.34% ID/g, percentage of injected dose per gram of tissue (ID/g)] and kidney uptake (12.35% ID/g) at 40–50 min post-injection. Infected mice showed focal pulmonary lesion uptake (5.58–12.49% ID/g), hepatobiliary uptake (15.30–40.50% ID/g), cervical node uptake, and renal uptake (11.66–29.33% ID/g). The ratio of infected lesioned lung/healthy lung uptake is 5.91:1, while the ratio of lesion uptake to adjacent infected radiolucent lung is 2.8:1. Pre-administration of 1 mg/kg of unlabeled JNJ-28312141 with [11C]JNJ-28312141 in infected animals resulted in substantial blockade. Fluorescence microscopy of infected and uninfected whole lung sections exclusively co-localized CSF1R staining with abundant Iba1 + macrophages. Healthy lung exhibited no CSF1R staining and very few Iba1 + macrophages.

Conclusion

[11C]JNJ-28312141 binds specifically to CSF1R + macrophages and delineates granulomatous foci of disease in a murine model of pulmonary TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gordon O, Ruiz-Bedoya CA, Ordonez AA, Tucker EW, Jain SK. Molecular imaging: a novel tool to visualize pathogenesis of infections In Situ. 2019;mBio 10.

  2. Jain SK, Tobin DM, Tucker EW, et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018;19:521–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Foss CA, Harper JS, Wang H, Pomper MG, Jain SK. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis. 2013;208:2067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ordonez AA, Carroll LS, Abhishek S, et al. Radiosynthesis and PET Bioimaging of (76)Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis. 2019;5:1996–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ordonez AA, DeMarco VP, Klunk MH, Pokkali S, Jain SK. Imaging Chronic Tuberculous Lesions Using Sodium [(18)F]Fluoride Positron Emission Tomography in Mice. Mol Imaging Biol. 2015;17:609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tucker EW, Guglieri-Lopez B, Ordonez AA et al. Noninvasive (11)C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2018;10:eaau0965.

  7. Foss CA, Plyku D, Ordonez AA, et al. Biodistribution and Radiation Dosimetry of (124)I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med. 2018;59:1751–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018;76:fty037.

  9. Ordonez AA, Pokkali S, Sanchez-Bautista J, et al. Matrix Metalloproteinase Inhibition in a Murine Model of Cavitary Tuberculosis Paradoxically Worsens Pathology. J Infect Dis. 2019;219:633–6.

    Article  CAS  PubMed  Google Scholar 

  10. Skerry C, Harper J, Klunk M, Bishai WR, Jain SK. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One. 2012;7:e39680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect Dis. 2020;20:e117–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Franze E, Laudisi F, Di Grazia A, et al. Macrophages produce and functionally respond to interleukin-34 in colon cancer. Cell Death Discov. 2020;6:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol. 2019;40:98–112.

    Article  CAS  PubMed  Google Scholar 

  14. Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol. 2019;107(2):205–219.

  15. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):a021857

  17. Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.

    Article  CAS  PubMed  Google Scholar 

  18. Peyraud F, Cousin S, Italiano A. CSF-1R Inhibitor Development: Current Clinical Status. Curr Oncol Rep. 2017;19:70.

    Article  PubMed  Google Scholar 

  19. El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem. 2018;61:5450–66.

    Article  CAS  PubMed  Google Scholar 

  20. Gelderblom H, Cropet C, Chevreau C, et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2018;19:639–48.

    Article  CAS  PubMed  Google Scholar 

  21. Papadopoulos KP, Gluck L, Martin LP, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23:5703–10.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Lu Y, Li R, et al. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma. Leukemia. 2018;32:176–83.

    Article  CAS  PubMed  Google Scholar 

  23. Pradel LP, Ooi CH, Romagnoli S, et al. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther. 2016;15:3077–86.

    Article  CAS  PubMed  Google Scholar 

  24. Horti AG, Naik R, Foss CA, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A. 2019;116:1686–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harper J, Skerry C, Davis SL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012;205:595–602.

    Article  CAS  PubMed  Google Scholar 

  26. Pan H, Yan BS, Rojas M, et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature. 2005;434:767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis SL, Nuermberger EL, Um PK, et al. Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother. 2009;53:4879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis SL, Be NA, Lamichhane G, et al. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One. 2009;4:e6297.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Glunde K, Foss CA, Takagi T, Wildes F, Bhujwalla ZM. Synthesis of 6’-O-lissamine-rhodamine B-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors. Bioconjug Chem. 2005;16:843–51.

    Article  CAS  PubMed  Google Scholar 

  30. Illig CR, Manthey CL, Wall MJ, et al. Optimization of a potent class of arylamide colony-stimulating factor-1 receptor inhibitors leading to anti-inflammatory clinical candidate 4-cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]pheny l]-1H-imidazole-2-carboxamide (JNJ-28312141). J Med Chem. 2011;54:7860–83.

    Article  CAS  PubMed  Google Scholar 

  31. Chitu V, Stanley ER. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor. Curr Top Dev Biol. 2017;123:229–75.

    Article  CAS  PubMed  Google Scholar 

  32. Jones CV, Williams TM, Walker KA, et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res. 2013;14:41.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Irwin SM, Prideaux B, Lyon ER, et al. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis. 2016;2:251–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Olson A, Ragan EJ, Nakiyingi L, et al. Brief Report: Pulmonary Tuberculosis Is Associated With Persistent Systemic Inflammation and Decreased HIV-1 Reservoir Markers in Coinfected Ugandans. J Acquir Immune Defic Syndr. 2018;79:407–11.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25:305–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carlessi AS, Borba LA, Zugno AI, Quevedo J, Reus GZ. Gut-microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci. 2021;53(1):222–235.

  37. Giridharan VV, Sayana P, Pinjari OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry. 2020;25:94–113.

    Article  PubMed  Google Scholar 

  38. Barichello T, Simoes LR, Quevedo J, Zhang XY. Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. Curr Top Behav Neurosci. 2020;44:161–205.

  39. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6:e26317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44:328–35.

    Article  CAS  PubMed  Google Scholar 

  41. Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol. 2019;7:250.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mathews WB, Wu Y, Horti AG, et al. Radiosynthesis and validation of [5-cyano-N-(4-(4-[(11) C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxamide] ([(11) C]CPPC), a PET radiotracer for imaging CSF1R, a microglia-specific marker. J Labelled Comp Radiopharm. 2019;62:903–8.

    Article  CAS  PubMed  Google Scholar 

  43. Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142:3243–64.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;165:371–99.

    Article  CAS  PubMed  Google Scholar 

  45. Mason C, Kossatz S, Carter L et al. A (89)Zr-HDL PET tracer monitors response to a CSF1R inhibitor. J Nucl Med. 2020;61(3):433–436.

  46. Moon HG, Kim SJ, Lee MK et al. Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy. 2020;75(2):357–369.

  47. Mammana S, Fagone P, Cavalli E et al. The role of macrophages in neuroinflammatory and neurodegenerative pathways of alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci 19. 2018;19(3):831.

  48. Costarelli L, Malavolta M, Giacconi R, Provinciali M. Dysfunctional macrophages in Alzheimer Disease: another piece of the “macroph-aging” puzzle? Aging (Albany NY). 2017;9:1865–6.

    Article  CAS  Google Scholar 

  49. Kim E, Cho S. Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics. 2016;13:702–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Varadkar S, Bien CG, Kruse CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Steinman L. Blocking immune intrusion into the brain suppresses epilepsy in Rasmussen’s encephalitis model. J Clin Invest. 2018;128:1724–6.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Manthey CL, Johnson DL, Illig CR, et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther. 2009;8:3151–61.

    Article  CAS  PubMed  Google Scholar 

  53. Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des. 2005;11:569–80.

    Article  CAS  PubMed  Google Scholar 

  54. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gallo J, Raska M, Kriegova E, Goodman SB. Inflammation and its resolution and the musculoskeletal system. J Orthop Translat. 2017;10:52–67.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol. 2018;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the following sources: R01AG066464, R01-AI153349, R01 EB020539, R01-AI145435-A1 and P41 EB024495. We would like to acknowledge Mariah Klunk for operating the scanner.

Author information

Authors and Affiliations

Authors

Contributions

CAF designed, conducted, analyzed, and prepared the manuscript. AAO kindly provided the mouse model, RN and DD synthesized the precursor, SKJ oversees the Ci3R where scans took place and provided funds for generation of the model (R01 EB020539), MGP provided funds (P41) and helped critically revise the manuscript and AGH designed the radiotracer and performed the radiochemistry, helped fund the work (R01AG066464) and helped revise the manuscript.

Corresponding author

Correspondence to Catherine A. Foss.

Ethics declarations

None of the authors have anything to disclose. All animal protocols were approved by the Johns Hopkins Biosafety, Radiation Safety and Animal Care and Use Committees. No human subjects or tissues were used in this work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Infection and inflammation

Supplementary Information

Below is the link to the electronic supplementary material.

259_2022_5862_MOESM1_ESM.pdf

Supplementary file1 (PDF 118 KB) Figure SI 1. PET/CT images of three additional TB infected mice pre-administered with 1 mg/kg JNJ-28312141 by gavage 1.5 h before I.V. radiotracer administration. Red crosshairs indicate CT apparent lesions in each mouse. Radiotracer is limited to hepatobiliary clearance tissues.

259_2022_5862_MOESM2_ESM.pdf

Supplementary file2 (PDF 58 KB) Figure SI 2. Immunofluorescence microscopy of infected lung (n = 1). Fluorescence channels are as indicated. Top left is a composite of all channels. Iba1+ alveolar macrophages (red, arrows) are abundant, are very large and are associated with CSF1R staining (red). Bar = 50 µm.

259_2022_5862_MOESM3_ESM.pdf

Supplementary file3 (PDF 93 KB) Figure SI 3. Immunofluorescence microscopy of uninfected lung (n = 1).Fluorescence channels are as indicated. Top left is a composite of all channels. Iba1+ macrophages are absent. All other green and red signals exclusively co-localize as red blood cell autofluorescence in all but UV channels (bottom left panel). No red CSF1R staining is observed in healthy lung parenchyma. Bar = 50 µm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foss, C.A., Ordonez, A.A., Naik, R. et al. PET/CT imaging of CSF1R in a mouse model of tuberculosis. Eur J Nucl Med Mol Imaging 49, 4088–4096 (2022). https://doi.org/10.1007/s00259-022-05862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05862-1

Keywords

Navigation