Skip to main content

Advertisement

Log in

Investigation of the Hydrogen-Rich Reduction of Panzhihua Ilmenite Concentrate Pellets

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The hydrogen-rich reduction of ilmenite concentrates has a significant effect on the reduction of the carbon footprint of the titanium slag production process. This study investigates the hydrogen-rich reduction of Panzhihua ilmenite concentrate pellets. The pellets were roasted at 500, 700, 900, and 1100 °C and used as the raw material for the reduction process. The effects of the pellet roasting temperature, magnetite concentrate content of the pellets, reduction temperature, and reducing gas composition on the reduction process were experimentally studied. The results showed that the average reduction rate is affected by the phase and dense structure of the pellet, reduction temperature, and hydrogen content. Further, the reduction process can be accelerated by increasing the H2 content and reduction temperature. The high compressive strength of the pellet, owing to its dense inner structure, is not conducive for the reduction process. Moreover, studies show that the H2/CO ratio has negligible effects on the reduction mechanism. The reaction mechanism of the pellet reduction process is three-dimensional diffusion. Furthermore, the effect of the pellet phase on the hydrogen-rich reduction process has been discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barnes JE, Peter W, Blue CA (2009) Evaluation of low cost titanium alloy products. Mater Sci Forum 618–619:165–168. https://doi.org/10.4028/www.scientific.net/MSF.618-619.165

    Article  Google Scholar 

  2. Liu W, Lü L, Yue H, Liang B, Li C (2017) Combined production of synthetic rutile in the sulfate TiO2 process. J Alloys Compd 705:572–580. https://doi.org/10.1016/j.jallcom.2017.02.195

    Article  CAS  Google Scholar 

  3. Chen G, Jiang Q, Li K, He A, Peng J, Omran M, Chen J (2020) Simultaneous removal of Cr(III) and V(V) and enhanced synthesis of high-grade rutile TiO2 based on sodium carbonate decomposition. J Hazard Mater 388:122039. https://doi.org/10.1016/j.jhazmat.2020.122039

    Article  CAS  Google Scholar 

  4. Yang H, Fan X, Sun Z, Guo L, Zhan M (2011) Recent developments in plastic forming technology of titanium alloys. Sci China Technol Sci 54(2):490–501. https://doi.org/10.1007/s11431-010-4206-y

    Article  CAS  Google Scholar 

  5. Theissmann R, Kluwig M, Koch T (2014) A reproducible number-based sizing method for pigment-grade titanium dioxide. Beilstein J Nanotechnol 5:1815–1822. https://doi.org/10.3762/bjnano.5.192

    Article  CAS  Google Scholar 

  6. Xibo L, Zhiqiang C (2015) Study on upgrading the quality grade of ilmenite concentrate. Iron Steel Vanadium Titanium 36 (01):16–20+63

  7. Yuan Z, Wang X, Xu C, Li W, Kwauk M (2006) A new process for comprehensive utilization of complex titania ore. Miner Eng 19(9):975–978. https://doi.org/10.1016/j.mineng.2005.10.002

    Article  CAS  Google Scholar 

  8. Zhu K, Wei Q, Li H, Ren X (2022) Recovery of titanium from ilmenite HCl leachate using a hydrophobic deep eutectic solvent. ACS Sustain Chem Eng 10(6):2125–2135. https://doi.org/10.1021/acssuschemeng.1c07204

    Article  CAS  Google Scholar 

  9. Samal S (2016) Synthesis and characterization of titanium slag from ilmenite by thermal plasma processing. JOM 68(9):2349–2358. https://doi.org/10.1007/s11837-016-1817-1

    Article  CAS  Google Scholar 

  10. Han FX, Sang XL, Xu JX (2013) Balance of raw input and energy of titanium slag smelting in closed high power direct current electric arc furnace. Adv Mater Res 734–737:1516–1521. https://doi.org/10.4028/www.scientific.net/AMR.734-737.1516

    Article  Google Scholar 

  11. Dang J, Zhang G-h, Chou K-c (2015) Kinetics and mechanism of hydrogen reduction of ilmenite powders. J Alloys Compd 619:443–451. https://doi.org/10.1016/j.jallcom.2014.09.057

    Article  CAS  Google Scholar 

  12. Lv W, Lv X, Xiang J, Hu K, Zhao S, Dang J, Han K, Song B (2019) Effect of preoxidation on the reduction of ilmenite concentrate powder by hydrogen. Int J Hydrogen Energy 44(8):4031–4040. https://doi.org/10.1016/j.ijhydene.2018.12.139

    Article  CAS  Google Scholar 

  13. Gou H-P, Zhang G-H, Chou K-C (2015) Influence of pre-oxidation on carbothermic reduction process of ilmenite concentrate. ISIJ Int 55(5):928–933. https://doi.org/10.2355/isijinternational.55.928

    Article  CAS  Google Scholar 

  14. Lei Y, Li Y, Peng J, Guo S, Li W, Zhang L, Wan R (2011) Carbothermic reduction of panzhihua oxidized ilmenite in a microwave field. ISIJ Int 51(3):337–343. https://doi.org/10.2355/isijinternational.51.337

    Article  CAS  Google Scholar 

  15. Samanta S, Mukherjee S, Dey R (2014) Oxidation behaviour and phase characterization of titaniferous magnetite ore of eastern India. Trans Nonferrous Metals Soc China 24(9):2976–2985. https://doi.org/10.1016/S1003-6326(14)63434-8

    Article  CAS  Google Scholar 

  16. Chen D, Zhao L, Liu Y, Qi T, Wang J, Wang L (2013) A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. J Hazard Mater 244–245:588–595. https://doi.org/10.1016/j.jhazmat.2012.10.052

    Article  CAS  Google Scholar 

  17. Tang J, Chu M-s, Li F, Feng C, Liu Z-g, Zhou Y-s (2020) Development and progress on hydrogen metallurgy. Int J Miner Metall Mater 27(6):713–723. https://doi.org/10.1007/s12613-020-2021-4

    Article  CAS  Google Scholar 

  18. Yao W, Chi-hui G, Xi-jie C, Li-qiong J, Xiao-na G, Rui-shan C, Mao-sheng Z, Ze-yu C, Hao-dong W (2021) Carbon peak and carbon neutrality in China: goals, implementation path and prospects. China Geol 4:720–746. https://doi.org/10.31035/cg2021083

    Article  CAS  Google Scholar 

  19. Zuo H-b, Wang C, Dong J-j, Jiao K-x, Xu R-s (2015) Reduction kinetics of iron oxide pellets with H2 and CO mixtures. Int J Miner Metall Mater 22(7):688–696. https://doi.org/10.1007/s12613-015-1123-x

    Article  CAS  Google Scholar 

  20. Pinegar HK, Moats MS, Sohn HY (2011) Process simulation and economic feasibility analysis for a hydrogen-based novel suspension ironmaking technology. Steel Res Int 82 (8):951–963. https://doi.org/10.1002/srin.201000288

  21. Dang J, Zhang G-h, Hu X-j, Chou K-c (2013) Non-isothermal reduction kinetics of titanomagnetite by hydrogen. Int J Miner Metall Mater 20(12):1134–1140. https://doi.org/10.1007/s12613-013-0846-9

    Article  CAS  Google Scholar 

  22. Si X-g, Lu X-g, Li C-w, Li C-h, Ding W-z (2012) Phase transformation and reduction kinetics during the hydrogen reduction of ilmenite concentrate. Int J Miner Metall Mater 19(5):384–390. https://doi.org/10.1007/s12613-012-0568-4

    Article  CAS  Google Scholar 

  23. Lu C-y, Zou X-l, Lu X-g, Xie X-l, Zheng K, Xiao W, Cheng H-w, Li G-s (2016) Reductive kinetics of Panzhihua ilmenite with hydrogen. Trans Nonferrous Metals Soc China 26(12):3266–3273. https://doi.org/10.1016/S1003-6326(16)64460-6

    Article  CAS  Google Scholar 

  24. Wang Y, Yuan Z, Matsuura H, Tsukihashi F (2009) Reduction extraction kinetics of titania and iron from an ilmenite by H2-Ar gas mixtures. ISIJ Int 49(2):164–170. https://doi.org/10.2355/isijinternational.49.164

    Article  CAS  Google Scholar 

  25. de Vries ML, Grey IE (2006) Influence of pressure on the kinetics of synthetic llmenite reduction in hydrogen. Metall Mater Trans B 37(2):199–208. https://doi.org/10.1007/BF02693149

    Article  Google Scholar 

  26. Lv W, Zhou G, Chen F, Liu Z, Tang J, Chu M, Lv X (2022) A novel process for preparing high-strength pellets of ilmenite concentrate. J Sustain Metall 8(1):551–565. https://doi.org/10.1007/s40831-022-00508-w

    Article  Google Scholar 

  27. Choi K, Jeon HS, Lee S, Kim Y, Park H (2022) Gaseous reduction behavior of primary ilmenite at temperatures between 1273 K and 1473 K. Metall Mater Trans B 53(1):334–341. https://doi.org/10.1007/s11663-021-02370-9

    Article  CAS  Google Scholar 

  28. Sun H, Wang J, Han Y, She X, Xue Q (2013) Reduction mechanism of titanomagnetite concentrate by hydrogen. Int J Miner Process 125:122–128. https://doi.org/10.1016/j.minpro.2013.08.006

    Article  CAS  Google Scholar 

  29. Lv W, Lv X, Zhang Y, Li S, Tang K, Song B (2017) Isothermal oxidation kinetics of ilmenite concentrate powder from Panzhihua in air. Powder Technol 320:239–248. https://doi.org/10.1016/j.powtec.2017.07.058

    Article  CAS  Google Scholar 

  30. Zhao S-q, Lv X-d, Yan Z-m, Lv X-w, Lv W, Bai C-g (2021) Effect of pre-oxidation degree on gaseous reduction of pre-oxidized ilmenite concentrate by CO. J Iron Steel Res Int. https://doi.org/10.1007/s42243-021-00623-0

    Article  Google Scholar 

  31. Lu F, Wen L, Zhao Y, Zhong H, Xu J, Zhang S, Yang Z (2019) The competitive adsorption behavior of CO and H2 molecules on FeO surface in the reduction process. Int J Hydrogen Energy 44(13):6427–6436. https://doi.org/10.1016/j.ijhydene.2019.01.173

    Article  CAS  Google Scholar 

  32. Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Ceram Soc 55(2):74–77. https://doi.org/10.1111/j.1151-2916.1972.tb11213.x

    Article  CAS  Google Scholar 

  33. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110(35):17315–17328. https://doi.org/10.1021/jp062746a

    Article  CAS  Google Scholar 

  34. Ding C, Lv X, Li G, Bai C, Xuan S, Tang K, Lv X (2018) Isothermal reduction of powdery 2CaO·Fe2O3 and CaO·Fe2O3 under H2 atmosphere. Int J Hydrogen Energy 43(1):24–36. https://doi.org/10.1016/j.ijhydene.2017.11.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52104325).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Lv or Mansheng Chu.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

The contributing editor for this article was Sharif Jahanshahi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Lv, W., Zhou, G. et al. Investigation of the Hydrogen-Rich Reduction of Panzhihua Ilmenite Concentrate Pellets. J. Sustain. Metall. 8, 1130–1139 (2022). https://doi.org/10.1007/s40831-022-00555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-022-00555-3

Keywords

Navigation