Skip to main content
Log in

Primary slag formation behavior during reduction process of SFCA-I and SFCA

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Because the formation behavior of primary slag which decomposed from complex calcium ferrite (SFCA-I and SFCA) is not quite clear, the migration behavior of CaO and Al2O3 derived from high basicity or high alumina sinter is always worth studying. The reducibility of three representative sinter samples and the formation behavior of primary slag during reduction process were investigated via X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy characterization. The results show that the reducibility of high basicity sinter is superior to that of high alumina sinter. Minerals with poor reducibility like hercynite and brownmillerite and with large-grained particles like free alumina and silica form in sinters with basicity of 2.4 and Al2O3 content of 4 wt.%, respectively. The appearance of these minerals can well explain the reduction stagnation phenomenon occurring in these sinter samples. The migration behavior of CaO and Al2O3 during slag formation process is different. CaO can easily combine with SiO2 to form silicate phase or firstly form calcium-rich ferro-aluminate solid solution and then transform to silicate phase, while Al2O3 firstly combines with CaO and FeO to form solid solution and then, gradually combines with SiO2 to form calcium aluminum silicate phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Nkogatse, A. Garbers-Craig, Miner. Process. Extr. Metall. Rev. 43 (2022) 300–312.

    Article  Google Scholar 

  2. Y.H. Yu, G.S. Feng, D.X. Su, J. Iron Steel Res. Int. 15 (2008) No. 5, 9–12.

    Article  Google Scholar 

  3. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, A.J. Studer, J.R. Manuel, J.A. Kimpton, Metall. Mater. Trans. B 45 (2014) 2097–2105.

    Article  Google Scholar 

  4. A. Cores, A. Babich, M. Muñiz, S. Ferreira, J. Mochon, ISIJ Int. 50 (2010) 1089–1098.

    Article  Google Scholar 

  5. D.C. Liles, J.P.R. de Villiers, V. Kahlenberg, Miner. Petrol. 110 (2016) 141–147.

    Article  Google Scholar 

  6. X. Ding, X.M. Guo, Metall. Mater. Trans. B 45 (2014) 1221–1231.

    Article  Google Scholar 

  7. H. Guo, X.M. Guo, Metall. Mater. Trans. B 49 (2018) 1974–1984.

    Article  Google Scholar 

  8. N.A.S. Webster, M.I. Pownceby, J.R. Manuel, R. Pattel, J.A. Kimpton, JOM 73 (2021) 299–305.

    Article  Google Scholar 

  9. K. Sugiyama, A. Monkawa, T. Sugiyama, ISIJ Int. 45 (2005) 560–568.

    Article  Google Scholar 

  10. N.A.S. Webster, D.P. O'dea, B.G. Ellis, M.I. Pownceby, ISIJ Int. 57 (2017) 41–47.

    Article  Google Scholar 

  11. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, A.N. Christensen, Metall. Mater. Trans. B 35 (2004) 929–936.

    Article  Google Scholar 

  12. D.Q. Zhu, Y.X. Xue, J. Pan, C.C. Yang, Z.Q. Guo, H.Y. Tian, D.Z. Wang, Y. Shi, J. Mater. Res. Technol. 9 (2020) 10223–10234.

    Article  Google Scholar 

  13. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, ISIJ Int. 53 (2013) 1334–1340.

    Article  Google Scholar 

  14. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, J.A. Kimpton, Metall. Mater. Trans. B 43 (2012) 1344–1357.

    Article  Google Scholar 

  15. T.R.C. Patrick, M.I. Pownceby, Metall. Mater. Trans. B 33 (2002) 79–89.

    Article  Google Scholar 

  16. J. Hancart, V. Leroy, A. Bragard, CNRM Metall. Rep. 11 (1967) 3–7.

    Google Scholar 

  17. K. Inoue, T. Ikeda, Tetsu-to-Hagane 68 (1982) 2190–2199.

    Article  Google Scholar 

  18. N.A.S. Webster, J.G. Churchill, F. Tufaile, M.I. Pownceby, J.R. Manuel, J.A. Kimpton, ISIJ Int. 56 (2016) 1715–1722.

    Article  Google Scholar 

  19. F. Liao, X.M. Guo, Minerals 9 (2019) 101.

    Article  Google Scholar 

  20. F. Liao, X.M. Guo, Mater. Res. Express 6 (2019) 106501.

    Article  Google Scholar 

  21. M.I. Pownceby, J.M.F. Clout, Miner. Process. Extr. Metall. 112 (2003) 44–51.

    Article  Google Scholar 

  22. F.J. Meng, C.Y. Sun, T.L. Li, Q. Wang, Iron and Steel 53 (2018) No. 7, 16–23.

    Google Scholar 

  23. S.J. Zhang, S.T. Wang, Iron and Steel 27 (1992) No. 7, 7–12.

    Google Scholar 

  24. L.G. Yan, Y.F. Wang, L.M. Cui, C.Q. Hu, Foundry Technology 38 (2017) 889–892.

    Google Scholar 

  25. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, A.N. Christensen, J. Appl. Cryst. 37 (2004) 362–368.

    Article  Google Scholar 

  26. E.A. Mousa, D. Senk, A. Babich, H.W. Gudenau, Ironmak. Steelmak. 37 (2010) 219–228.

    Article  Google Scholar 

  27. Y.X. Liu, J.L. Zhang, Z.Y. Wang, K.X. Jiao, G.H. Zhang, K.C. Chou, Int. J. Miner. Metall. Mater. 24 (2017) 130–138.

    Article  Google Scholar 

  28. P.A. Tanskanen, S.M. Huttunen, P.H. Mannila, J.J. Härkki, Ironmak. Steelmak. 29 (2002) 281–286.

    Article  Google Scholar 

  29. Y.N. Qie, Q. Lyu, C.C. Lan, S.H. Zhang, R. Liu, J. Iron Steel Res. Int. 27 (2020) 132–140.

    Article  Google Scholar 

  30. T.L. Li, C.Y. Sun, X.Y. Liu, S. Song, Q. Wang, Ironmak. Steelmak. 45 (2018) 755–763.

    Article  Google Scholar 

  31. K.K. Bai, H.B. Zuo, W.G. Liu, J.S. Wang, J.S. Chen, Q.G. Xue, J. Iron Steel Res. Int. (2021) https://doi.org/10.1007/s42243-021-00656-5.

    Article  Google Scholar 

  32. Y.F. Li, Z.J. He, W.L. Zhan, W.G. Kong, P. Han, J.H. Zhang, Q.H. Pang, Metals 10 (2020) 1254.

    Article  Google Scholar 

  33. S.L. Wu, L.X. Wang, Y.J. Wang, J.C. Zhang, Chin. J. Eng. 38 (2016) 1546–1552.

    Google Scholar 

  34. S.J. Lian, L.X. Xu, Sinter. Pelletiz. 31 (2006) No. 4, 7–10.

    MathSciNet  Google Scholar 

  35. Z.Y. Zhang, X.S. Wang, G.H. Zhao, J. Anhui Univ. Technol. (Nat. Sci.) 32 (2015) 99–104.

    Google Scholar 

  36. N. Taguchi, T. Otomo, K. Tasaka, Tetsu-to-Hagane 69 (1983) 1409–1416.

    Article  Google Scholar 

  37. D.Q. Zhu, Y.X. Xue, J. Pan, X.L. Zhou, J. Mater. Metall. 16 (2017) 1–7.

    Google Scholar 

  38. K. Higuchi, M. Naito, M. Nakano, Y. Takamoto, ISIJ Int. 44 (2004) 2057–2066.

    Article  Google Scholar 

  39. X.A. Wang, X. Jiang, Y. Gao, H.Y. Huo, F.M. Shen, Iron and Steel 54 (2019) No. 5, 9–13.

    Google Scholar 

  40. S.V. Ott, Sintering properties of platinum nanoparticles on different oxide-based substrates, Ruprecht-Karls-Universität, Heidelberg, Germany, 2020.

    Google Scholar 

  41. S.J. Chen, F.R. Tian, G.H. Li, Y. Zhang, Phase diagram analysis and application, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  42. Z. Wang, J.L. Zhang, H.B. Zuo, B. Gao, F.G. Li, R.B. Wang, Iron and Steel 50 (2015) No. 7, 20–25+76.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51634004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-yu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Fj., Sun, Cy., Li, Tl. et al. Primary slag formation behavior during reduction process of SFCA-I and SFCA. J. Iron Steel Res. Int. 29, 1748–1759 (2022). https://doi.org/10.1007/s42243-022-00794-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00794-4

Keywords

Navigation