Skip to main content
Log in

Design of Process and Equipment for Wide-Thick Slab CSC-Roll Reduction and Study of the Resulting Surface Crack Risk

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, a curved surface convex roll (CSC-Roll) suitable for wide-thick slabs was designed. According to the field conditions and casting parameters, a 3D thermal-mechanical coupling model of CSC-Roll reduction was established, and the uneven solidification morphology of the slab was obtained. By analyzing the liquid core deformation rate, surface maximum stress and reduction force of the CSC-Roll with different shape parameters, the optimal shape parameters of the CSC-Roll were designed. By coupling the shrinkage void in the 3D thermal-mechanical coupling model, the coalescence degree of shrinkage voids under the flat reduction is calculated to be 8.78 pct, and that under CSC-Roll reduction is 9.68 pct, and the deformation degrees of the shrinkage voids in different directions were compared. The critical strain of slab surface crack propagation measured by high-temperature tensile test is 0.181. Based on the relationship between crack tip strain and initial crack length during reduction, the critical initial lengths of longitudinal and transverse crack propagation on slab surface were obtained to be 15.7 mm and 28.0 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. S. Ogibayashi, M. Kobayashi, M. Yamada, and T. Mukai: ISIJ Int, 1991, vol. 31, pp. 1400–07.

    Article  CAS  Google Scholar 

  2. H. Preßlinger, S. Ilie, P. Reisinger, A. Schiefermüller, A. Pissenberger, E. Parteder, and C. Bernhard: ISIJ Int, 2006, vol. 46, pp. 1845–51.

    Article  Google Scholar 

  3. R. Thome and K. Harste: ISIJ Int, 2006, vol. 46, pp. 1839–44.

    Article  CAS  Google Scholar 

  4. C. Ji, S. Luo, M.Y. Zhu, and Y. Sahai: ISIJ Int, 2014, vol. 54, pp. 103–11.

    Article  CAS  Google Scholar 

  5. D.B. Jiang, L.F. Zhang, and M.Y. Zhu: Steel Res. Int, 2022, vol. 93, p. 2100569.

    Article  CAS  Google Scholar 

  6. D.B. Jiang, W.L. Wang, and S. Luo: Int. J. Heat Mass Transfer, 2018, vol. 122, pp. 315–23.

    Article  Google Scholar 

  7. M.O. El-Bealy: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1488–1516.

    Article  Google Scholar 

  8. H.B. Sun, L.L. Li, and J.H. Wang: Ironmak. Steelmak., 2018, vol. 45, pp. 708–13.

    Article  CAS  Google Scholar 

  9. R.M.P. Huitron, P.E.R. Lopez, and E. Vuorinen: Mater. Sci. Eng. A, 2020, vol. 772, p. 138691.

    Article  Google Scholar 

  10. N. Zong, H. Zhang, and Y. Liu: Ironmak. Steelmak., 2019, vol. 46, pp. 872–85.

    Article  CAS  Google Scholar 

  11. M. Jiang, E.J. Yang, and Z.W. Hou: Metall. Mater. Trans. B, 2021, vol. 52, pp. 2753–59.

    Article  CAS  Google Scholar 

  12. J.Y. Zhang, C.H. Wu, and C. Ji: Steel Res. Int, 2021, https://doi.org/10.1002/srin.202000601.

    Article  Google Scholar 

  13. Z.J. Wei, C. Ji, and T.C. Chen: J. Iron Steel Res. Int., 2022, vol. 29, pp. 103–14.

    Article  CAS  Google Scholar 

  14. Z.J. Wei, C. Ji, and T.C. Chen: Steel Res. Int, 2022, vol. 93, p. 2100348.

    Article  CAS  Google Scholar 

  15. C. Ji, C.H. Wu, and M.Y. Zhu: JOM, 2016, vol. 68, pp. 3107–15.

    Article  Google Scholar 

  16. G.L. Li, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1164–78.

    Article  Google Scholar 

  17. C.H. Wu, C. Ji, and M.Y. Zhu: J. Mater. Process. Technol, 2019, vol. 271, pp. 651–59.

    Article  Google Scholar 

  18. C.H. Wu, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2867–83.

    Article  Google Scholar 

  19. C.H. Wu, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 39B, pp. 1346–59.

    Article  Google Scholar 

  20. C.H. Wu, C. Ji, and M.Y. Zhu: Metals, 2019, vol. 9, p. 128.

    Article  CAS  Google Scholar 

  21. R. Guan, C. Ji, and C.H. Wu: Int. J. Heat Mass Transfer, 2019, vol. 141, pp. 503–16.

    Article  CAS  Google Scholar 

  22. Y. Qi, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. A, 2018, vol. 50, pp. 357–76.

    Google Scholar 

  23. I. Kohichi, M. Hirobumi, and S. Kiyomi: Tetsu-to-Hagane, 1994, vol. 80, pp. 42–47.

    Article  Google Scholar 

  24. M. Okimori, R. Nishihara, S. Fukunaga, and Y. Okamioto: Tetsu-to-Hagane, 1994, vol. 80, pp. T120-23.

    Google Scholar 

  25. M. Takubo, Y. Matsuoka, Y. Miura, H. Higashi and S. Kittaka: The METEC and 2nd ESTAD. Session, 2015, pp. 307–18.

  26. M.C. Ho, O.K. Shik, and L.J. Dong: ISIJ Int, 2012, vol. 52, pp. 1266–72.

    Article  Google Scholar 

  27. T. Li, H. Li, and R. Li: ISIJ Int, 2019, vol. 59, pp. 1314–22.

    Article  CAS  Google Scholar 

  28. C. Ji, G.L. Li, and C.H. Wu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 110–22.

    Article  CAS  Google Scholar 

  29. J.X. Fu, J.S. Li, and H. Zhang: Acta Metall. Sin, 2010, vol. 46, pp. 91–96.

    Article  CAS  Google Scholar 

  30. C. Ji, Z.L. Wang, C.H. Wu, and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 767–82.

    Article  Google Scholar 

  31. Q. Zhou, C. Ji, and M.Y. Zhu: Mater. Res. Express, 2019, vol. 6, p. 12652.

    Article  Google Scholar 

  32. Y. Hiroyuki, N. Yhkiichi, and M. Takasuke: ISIJ Int, 1981, vol. 21, pp. 469–76.

    Article  Google Scholar 

  33. S. Punnose, A. Mukhopadhyay, and R. Sarkar: Mater. Sci. Eng. A, 2013, vol. 576, pp. 217–21.

    Article  CAS  Google Scholar 

  34. N. Zong, Y. Liu, and H. Zhang: Metall. Res. Technol, 2017, vol. 114, p. 413.

    Article  Google Scholar 

Download references

Acknowledgments

The present work was financially supported by the National Natural Science Foundation of China (51974078), Liaoning Revitalization Talents Program (XLYC1907176) and the Fundamental Research Funds for the Central Universities of China (N2025012, N2125007). Special thanks are due to Ansteel Steel Company for facilitating the industrial trials and applications.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ji, C. & Zhu, M. Design of Process and Equipment for Wide-Thick Slab CSC-Roll Reduction and Study of the Resulting Surface Crack Risk. Metall Mater Trans B 53, 2925–2941 (2022). https://doi.org/10.1007/s11663-022-02575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02575-6

Navigation