Skip to main content
Log in

Emergence of cosmic space and its connection with thermodynamic principles

  • Invited Report: Introduction to Current Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The recent research on the connection between gravity and thermodynamics suggests that gravity could be an emergent phenomenon. Following this, Padmanabhan proposed a novel idea that the expansion of the universe can be interpreted as equivalent to the emergence of space with the progress of cosmic time. In this approach, the expansion of the universe is described by what is known as the law of emergence, which states that the expansion of the universe is driven by the difference between the number of bulk and surface degrees of freedom in a region bounded by the Hubble radius. This principle correctly reproduces the standard evolution of a Friedmann universe. We establish the connection of the law of emergence, which is conceptually different from the conventional paradigm to describe cosmology, with other well-established results in thermodynamics. It has been shown that the law of emergence can be derived from the unified first law of thermodynamics, which can then be considered as the backbone of the law. However, the law of emergence is rich in structure than implied by the First law thermodynamics alone. It further explains the evolution of the universe towards a state of maximum horizon entropy. Following this, it can be considered that the first law of thermodynamics, along with the additional constraints imposed by the maximisation of the horizon entropy, can together lead to the law of emergence. In the present article, we first make a brief review of Padmanabhan’s proposal and then studies its connection with the thermodynamics of the horizon in the context of Einstein’s, Gauss-Bonnet, and more general Lovelock gravity theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

We haven’t used any data for any of the analysis in this article.

References

  1. Akbar, M., Cai, R.-G.: Thermodynamic behaviour of Friedmann equations at the apparent horizon of FRW Universe. Phys. Rev. D 75, 084003 (2007)

    Article  ADS  Google Scholar 

  2. Akbar, M., Cai, R.-G.: Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635, 7 (2006). arXiv:hep-th/0602156 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Akbar, M., Cai, R.-G.: Thermodynamic behavior of field equations for f (R) gravity. Phys. Letts. B 648, 243 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Arkani-Hamed, N., Dimopoulos, S., Dvali, G.: Phys. Lett. B 429, 263 (1998). arXiv:hep-ph/9803315 [hep-ph]

    Article  ADS  Google Scholar 

  5. Ashtekar, A., Barrau, A.: (2015). arXiv:1504.07559 [gr-qc]

  6. Bamba, K., Geng, C.-Q., Nojiri, S., Odintsov, S. D.: Equivalence of modified gravity equation to the clausius relation. EPL 89, 50003 (2010)

  7. Bak, D., Rey, S.-J.: Cosmic holography. Class. Quant. Grav. 17, L83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bekenstein, J.D.: Lett. Nuovo Cimento Soc. Ital. Fis. 4, 737 (1972)

    Article  ADS  Google Scholar 

  10. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bekenstein, J.D.: Generalized second law of thermodynamics in Black hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  12. Bekenstein, J.D.: Statistical Black Hole Thermodynamics. Phys. Rev. D 12, 3077 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bousso, R.: Cosmology and the S-matrix. Phys. Rev. D 71, 064024 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cai, R.G.: Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Cai, R.G.: A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 582, 237 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Cai, R.G., Myung, Y.S.: Holography and entropy bounds in Gauss-Bonnet gravity. Phys. Lett. B 559, 60 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Cai, R.G., Guo, Q.: Gauss-Bonnet black holes in dS spaces. Phys. Rev. D 69, 104025 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cai, R.-G., Kim, S.P.: JHEP 02, 050 (2005). arXiv:hep-th/0501055 [hep-th]

    Article  ADS  Google Scholar 

  19. Cai, R.-G., Cao, L-M., Hu, Y-P.: Hawking radiation of apparent horizon in a FRW universe. Class. Quant. Grav. 26, 155018 (2009)

  20. Cai, R.-G., Cao, L.-M.: Phys. Rev. D 75, 064008 (2007). arXiv:gr-qc/0611071 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  21. Cai, R.G.: Emergence of Space and Spacetime Dynamics of Friedmann-Robertson-Walker Universe. JHEP 11, 016 (2012)

  22. Caldwell, R., Linder, E.V.: The limits of quintessence. Phys. Rev. Lett. 95, 141301 (2005)

    Article  ADS  Google Scholar 

  23. Callen, H.B.: Thermodynamics. Wiley, New York (1960)

    MATH  Google Scholar 

  24. Chakraborty S: Classical and Quantum Aspects of Gravity in Relation to the Emergent Paradigm (Springer Thesis), Springer (Switzerland) (2017)

  25. Chakraborty, S., Padmanabhan, T.: Evolution of Spacetime Arises due to the Departure from Holographic Equipartition in all Lanczos-Lovelock Theories of Gravity. Phys. Rev. D 90, 124017 (2014)

    Article  ADS  Google Scholar 

  26. Chakraborty, S., Parattu, K., Padmanabhan, T.: Gravitational field equations near an arbitrary null surface expressed as a thermodynamic identity. JHEP 10, 097 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Chakraborty, S.: Lanczos-Lovelock gravity from a thermodynamic perspective. JHEP 1508, 029 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Chang-Young, E., Lee, D.: JHEP 04, 125 (2014). arXiv:1309.3084 [hep-th]

    Article  ADS  Google Scholar 

  29. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D. 62, 023511 (2000)

    Article  ADS  Google Scholar 

  30. Davies, P.: J. Phys. A 8, 609 (1975)

    Article  ADS  Google Scholar 

  31. Damour, T.: Proceedings of the Second Marcel Grossmann Meeting on General Relativity (1982)

  32. de Haro, S., Dieks, D., Verlinde, E., et al.: Foundations of Physics 43(1), 1–7 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Dezaki, F.L., Mirza, B.: Gen. Rel. Grav. 47, 67 (2015). arXiv:1406.3712 [gr-qc]

    Article  ADS  Google Scholar 

  34. Eune, M., Kim, W.: Phys. Rev. D 88, 067303 (2013)

    Article  ADS  Google Scholar 

  35. Frolov, A.V., Kofman, L.: Inflation and de Sitter thermodynamics. JCAP 05, 009 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Gambini, R., Pullin, J.: Phys. Rev. Lett. 110(21), 211301 (2013). arXiv:1302.5265 [gr-qc]

    Article  ADS  Google Scholar 

  37. Gibbons, G.W., Hawking, S.W.: Action Integrals and Partition functions in Quantum Gravity. Phys. Rev. D 15, 2752 (1977)

    Article  ADS  Google Scholar 

  38. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  39. Gruber, C., Luongo, O.: Cosmographic analysis of the equation of state of the universe through Padé approximations. Phys. Rev. D 89(10), 103506 (2014)

    Article  ADS  Google Scholar 

  40. Hadi, H., Darabi, F., Sheykhi, A.: Emergent universe in the braneworld scenario. Eur. Phys. J. C 76, 323 (2016)

    Article  ADS  Google Scholar 

  41. Hareesh, T., Krishna, P.B., Mathew, T.K.: First law of thermodynamics and emergence of cosmic space in a non-flat universe. JCAP 12, 024 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Hashemi, M., Jalalzadesh, S., Farahani, S.V.: The laws of thermodynamics and information for emergent cosmology. Gen. Rel. Grav 47, 139 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Hassan, B.V.T., Krishna, P.B., Mathew, T.K.: Emergence of space and expansion of universe. Class. Quant. Grav. 39, 115012 (2022). arXiv:1905.03552 [gr-qc]

  44. Hassan, B.V.T., Krishna, P.B., Mathew, T.K.: Emergence of space from non-equilibrium thermodynamics in f(R) gravity, arXiv:2111.00726 [gr-qc]

  45. Hawking, S.W.: Particle Creation by Black Holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hawking, S.W.: Black Holes and Thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  ADS  Google Scholar 

  47. Hayward, S.A.: Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Grav. 15, 3147–3162 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Hayward, S.A., Mukohyama, S., Ashworth, M.C.: Dynamic black hole entropy. Phys. Lett. A 256, 347–350 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. Horava, P., Witten, E.: Nucl. Phys. B 475, 94 (1996). arXiv:hep-th/9603142 [hep-th]

    Article  ADS  Google Scholar 

  50. Jacobson, T.: Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kamenshchik, A.Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  52. Kolekar, S., Padmanabhan, T.: Phys. Rev. D 85, 024004 (2012). arXiv:1109.5353 [gr-qc]

    Article  ADS  Google Scholar 

  53. Kolekar, S., Kothawala, D., Padmanabhan, T.: Phys. Rev. D 85, 064031 (2012). arXiv:1111.0973 [gr-qc]

    Article  ADS  Google Scholar 

  54. Kolekar, S., Padmanabhan, T.: Phys. Rev. D 82, 024036 (2010). arXiv:1005.0619 [gr-qc]

    Article  ADS  Google Scholar 

  55. Komatsu, N.: Thermodynamic constraints on a varying cosmological constant like term from the holographic equipartition law with a power law corrected entropy. Phys. Rev. D 96, 103507 (2017)

    Article  ADS  Google Scholar 

  56. Komatsu, N.: Horizon thermodynamic in holographic cosmological models with a power law term. Phys. Rev. D 100, 123545 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. Kothawala, D., Padmanabhan, T.: Phys. Rev. D 79, 104020 (2009). arXiv:0904.0215 [gr-qc]

    Article  ADS  Google Scholar 

  58. Krishna, P.B., Mathew, T.K.: Does holographic equipartition demand a pure cosmological constant? Mod. Phys. Lett. A 35, 2050334 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  59. Krishna, P.B., Mathew, T.K.: Holographic equipartition and the maximization of entropy. Phys. Rev. D 96, 063513 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. Krishna, P.B., Mathew, T.K.: Entropy maximization in the emergent gravity paradigm. Phys. Rev. D 99, 023535 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  61. Krishna, P.B., Mathew, T.K.: Emergence of cosmic space and the maximization of horizon entropy, arXiv:2002.02121 [gr-qc]

  62. Lanczos, C.: Z. Phys. 73, 147 (1932)

    Article  ADS  Google Scholar 

  63. Lovelock, D.: The Einstein tensor and it’s generalization. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Mahith, M., Krishna, P.B., Mathew, T.K.: Expansion law from first law of thermodynamics. JCAP 12, 042 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, 3rd edn. W.H, Freeman and Company (1973)

  66. Mukhopadhyay, A., Padmanabhan, T.: Phys. Rev. D 74, 124023 (2006). arXiv:hep-th/0608120

    Article  ADS  MathSciNet  Google Scholar 

  67. Padmanabhan, T.: In The Universe (Springer) 239-251 (2000)

  68. Padmanabhan, T.: Class. Quant. Grav. 19, 5387 (2002). arXiv:gr-qc/0204019 [gr-qc]

    Article  ADS  Google Scholar 

  69. Padmanabhan, T.: Gravitational entropy of static spacetimes and microscopic density of states. Class. Quant. Grav. 21, 4485 (2004). (arXiv:gr-qc/0308070 [gr-qc])

  70. Padmanabhan, T.: Braz. J. Phys. 35, 362 (2005). arXiv:gr-qc/0412068 [gr-qc]

    Article  ADS  Google Scholar 

  71. Padmanabhan, T.: Albert Einstein century. Proceedings, International Conference, Paris, France, July 18-22, 2005, AIP Conf. Proc. 861, 179, (2006). arXiv:astro-ph/0603114 [astro-ph]

  72. Padmanabhan, T., Paranjape, A.: Phys. Rev. D 75, 064004 (2007). arXiv:gr-qc/0701003 [gr-qc]

  73. Padmanabhan, T.: Gen. Rel. Grav. 40, 529 (2008). arXiv:0705.2533 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  74. Padmanabhan, T.: A Physical Interpretation of Gravitational Field Equations. AIp Conf. proc. 1241, 93 (2010). [arxiv:0911.1403 [gr-qc]]

    Article  ADS  Google Scholar 

  75. Padmanabhan, T.: Entropy density of spacetime and thermodynamic interpretation of field equations of gravity in any diffeomorphic invariant theory, [arxiv:0903.1254 [hep-th]]

  76. Padmanabhan, T.: Equipartition of energy in the horizon degrees of freedom and the emergence of gravity. Mod. Phys. Lett. A 25, 1129 (2010). [arXiv:0912.3165 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Padmanabhan, T.: Gravitation: Foundations and Frontiers. Cambridge University Press, Cambridge, UK (2010)

    Book  MATH  Google Scholar 

  78. Padmanabhan, T.: Rept. Prog. Phys. 73, 046901 (2010). arXiv:0911.5004 [gr-qc]

    Article  ADS  Google Scholar 

  79. Padmanabhan, T.: Mod. Phys. Lett. A 25, 1129 (2010). [arxiv: 0912.3165]

    Article  ADS  Google Scholar 

  80. Padmanabhan, T.: Phys. Rev. D 81, 124040 (2010). [arxiv: 1003.5665]

    Article  ADS  Google Scholar 

  81. Padmanabhan, T.: Phys. Rev. D 83, 044048 (2011). arXiv:1012.0119 [gr-qc]

    Article  ADS  Google Scholar 

  82. Padmanabhan, T.: Emergence and Expansion of Cosmic Space as due to the Quest for Holographic Equipartition. arXiv:1206.4916 [hep-th] (2012)

  83. Padmanabhan, T.: Emergent perspective on gravity and dark energy. Research in Astro. Astrophys. 12, 891 (2012)

    Article  ADS  Google Scholar 

  84. Padmanabhan, T., Padmanabhan, H.: Int. J. Mod. Phys. D 22, 1342001 (2013). arXiv:1302.3226 [astro-ph.CO]

    Article  ADS  Google Scholar 

  85. Padmanabhan, T., Padmanabhan, H.: Int. J. Mod. Phys. D 23(6), 1430011 (2014). arXiv:1404.2284 [gr-qc]

    Article  ADS  Google Scholar 

  86. Padmanabhan, T.: Gen. Rel. Grav. 46, 1673 (2014). arXiv:1312.3253 [gr-qc]

    Article  ADS  Google Scholar 

  87. Padmanabhan, T.: Gravity and Spacetime: An Emergent Perspective, Part of Springer Handbook of Spacetime (2014)

  88. Padmanabhan, T.: Gravitational effective action at mesoscopic scales from the quantum microstructure of spacetime. Phys. Letts., B 814, 136109 (2021). [arXiv:2011.08859]

    Article  MathSciNet  MATH  Google Scholar 

  89. Paranjape, A., Sarkar, S., Padmanabhan, T.: Phys. Rev. D 74, 104015 (2006). arXiv:hep-th/0607240 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  90. Parattu, K., Majhi, B.R., Padmanabhan, T.: Phys. Rev. D 87, 124011 (2013). arXiv:gr-qc/1303.1535 [gr-qc]

    Article  ADS  Google Scholar 

  91. Pavon, D., Radicella, N.: Does the entropy of the Universe tend to a maximum? Gen. Rel. Grav. 45, 63 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999). arXiv:hep-ph/9905221 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  93. Rendall, A.D.: 100 Years Of Relativity : space-time structure: Einstein and beyond, 76, (2005). arXiv:gr-qc/0503112 [gr-qc]

  94. Rovelli, C., Vidotto, F.: Phys. Rev. Lett. 111, 091303 (2013). arXiv:1307.3228 [gr-qc]

    Article  ADS  Google Scholar 

  95. Sahni, V., Starobinsky, A.A.: The Case for a Positive Cosmological Lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)

    Article  ADS  Google Scholar 

  96. Sheykhi, A., Dehghani, M.H., Hosseini, S.E.: Emergence of spacetime dynamics in entropy corrected and braneworld models. JCAP 04, 038 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  97. Sheykhi, A., Dehghani, M.H., Hosseini, S.E.: Friedmann equations in brane world scenarios from emergence of cosmic space. Phys. Lett. B 726, 23 (2013)

    Article  ADS  MATH  Google Scholar 

  98. Sheykhi, A.: Friedmann equations from emergence of cosmic space. Phys. Rev. D 87, 061501(R) (2013)

    Article  ADS  Google Scholar 

  99. Thorne, K.S., Price, R.H., MacDonald, D.A.: Yale University Press (1986)

  100. Tian, D.W., Booth, I.: Phys. Rev. D 92(2), 024001 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  101. Unruh, W.: Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  102. Verlinde, E.P.: On the Origin of Gravity and the Laws of Newton. JHEP 04, 029 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Wald, R.M.: Black hole entropy is the Noether charge. Phys. Rev. D 48, R3427 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. Yang, K., Liu, Y.-X., Wang, Y.-Q.: Emergence of Cosmic Space and the Generalized Holographic Equipartition. Phys. Rev. D 86, 104013 (2012)

    Article  ADS  Google Scholar 

  105. Zhang, W., Kuang, X.: The quantum effect on Friedmann equation in FRW universe. Adv. High Energy Phys, 6758078 (2018)

  106. Zhao, G.B., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627 (2017)

    Article  ADS  Google Scholar 

  107. Zlatev, I., Wang, L.-M., Steinhardt, P.J.: Quintessence, cosmic co-incidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Mahith M and Hareesh T for discussions. Hassan Basari V T acknowledges Cochin University of Science and Technology for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titus K. Mathew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, P.B., Hassan Basari, V.T. & Mathew, T.K. Emergence of cosmic space and its connection with thermodynamic principles. Gen Relativ Gravit 54, 58 (2022). https://doi.org/10.1007/s10714-022-02941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02941-4

Keywords

Navigation