Skip to main content

Advertisement

Log in

Fabrication and Characterization of Plasma-Sprayed Cr3C2-25 Cr/Al2O3-40TiO2 Duplex Coating

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The atmospheric plasma spray process is considered here as a suitable techniques for fabricating ceramic coatings. The duplex coating system consists of two layers: Cr3C2-25NiCr (as bond coat) and Al2O3-40TiO2 (as top coat). Plasma spraying parameters including spraying distance (100-200 mm), powder feed rate (10–50 g/min), and arc current (500–600 A) were used to fabricate this coating system on a S45C steel surface. The effect of plasma spraying parameters on coating properties and structure was evaluated. The experimental results showed that the optimal operating conditions provided the lowest value of coating porosity (~4%), corrosion current density icorr (~6.12 μA/cm2), HV0.1 microhardness (~846) at 10 g/min powder feed rate, 100 mm spraying distance, and 600 A current. The sample sprayed at 30 g/min powder feed rate, 150 mm spray distance, and 550 A arc current had the highest value of coating adhesion (~ 55 MPa). The results of X-ray diffraction analysis on the surface of the coating samples showed that most TiO2 crystals were dissolved in γ-Al2O3 to form a solid Al2TiO5 solution.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. C. Cui and W.A. Hou, Properties of Fe-based Amorphous Alloy Coatings with Al2O3-13% TiO2 Deposited by Plasma Spraying, Rare. Met. Mater. Eng., 2014, 43(11), p 2576-2579.

    Article  Google Scholar 

  2. J. Sebastian, A. Scaria and D.G. Kurian, Development and Characterization of Alumina Coating by Atmospheric Plasma Spraying, Appl. Mech. Mater., 2018, 877, p 104-109.

    Article  Google Scholar 

  3. M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Tech., 2001, 146-147, p 48-54.

    Article  CAS  Google Scholar 

  4. Z. Znamirowski, L. Pawlowski, T. Cichy and W. Czarczynski, Low Macroscopic Field Electron Emission from Surface of Plasma Sprayed and Laser Engraved TiO2, Al2O3+13TiO2 and Al2O3+40TiO2 Coatings, Surf. Coat. Tech., 2004, 187, p 37-46.

    Article  CAS  Google Scholar 

  5. Q. Liu, T. He, W.Y. Guo, Y. Bai, Y.S. Ma, Z.D. Chang, H.B. Liu, Y.X. Zhou, F. Ding, Y.W. Sun, Z.F. Han and J.J. Tang, Tribological Behavior of SAPS Sprayed Al2O3-TiO2 and NiCr-Cr3C2 Coatings Under Severe Load Conditions, Surf. Coat. Tech., 2019, 370, p 362-373.

    Article  CAS  Google Scholar 

  6. K.A. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Gimenez and L. Cabedo, Comparison of Flame Sprayed Al2O3/TiO2 Coatings: Their Microstructure, Mechanical Properties and Tribology Behavior, Surf. Coat. Tech., 2006, 201(3-4), p 1436-1443.

    Article  CAS  Google Scholar 

  7. R. Tomaszek, L. Pawlowski, J. Zdanowski, J. Grimblot and J. Laureyns, Microstructural Transformations of TiO2, Al2O3+13TiO2 and Al2O3+40TiO2 at Plasma Spraying and Laser Engraving, Surf. Coat. Tech., 2004, 185(2-3), p 137-149.

    Article  CAS  Google Scholar 

  8. I.M. Kusoglu, E. Celik, H. Cetinel, I. Ozdemir, O. Demirkurt and K. Onel, Wear Behavior of Fame-Sprayed Al2O3-TiO2 Coatings on Plain Carbon Steel Substrates, Surf. Coat. Tech., 2005, 200(1-2), p 1173-1177.

    Article  CAS  Google Scholar 

  9. A.R.M. Sahab, N.H. Saad, S.K. Lang and J. Saedon, Impact of Plasma Spray Variables Parameters on Mechanical and Wear Behaviour of Plasma Sprayed Al2O3 3%wt TiO2 Coating in Abrasion and Erosion Application, Pro. Eng., 2012, 41, p 1689-1695.

    Article  CAS  Google Scholar 

  10. G. Mohammed, T. Basha, A. Srikanth and B. Venkateshwarlu, Effect of Reinforcement of Carbon Nanotubes on Air Plasma Sprayed Conventional Al2O3-3%TiO2 Ceramic Coatings, Mater. Today Proc., 2020, 20(2), p 191-194.

    Article  Google Scholar 

  11. X. Lin, Y. Zeng, C. Ding and P. Zhang, Effects of Temperature on Tribological Properties of Nanostructured and Conventional Al2O3–3 wt%TiO2 coatings, Wear, 2004, 256(11-12), p 1018-1025.

    Article  CAS  Google Scholar 

  12. L. Xu and D. Wang, Grain Growth Characteristics of Plasma-Sprayed Nanostructured Al2O3-13wt%TiO2 Coatings during Laser Remelting, Ceram. Int., 2021, 47(11), p 15052-15058.

    Article  CAS  Google Scholar 

  13. C. Chong and H. Weiao, Properties of Fe-based Amorphous Alloy Coatings with Al2O3-13%TiO2 Deposited by Plasma Spraying, Rare. Met. Mater. Eng, 2014, 43(11), p 2576-2579.

    Article  Google Scholar 

  14. C. Zhang, B. Huang, J. Xu, W. Cao and S. Yin, Effect of Mo on Tribological Behaviors of Atmospheric Plasma Sprayed Al2O3-13%TiO2/Mo Coatings under Boundary Lubrication Condition, Ceram. Int., 2020, 46(10), p 15052-15058.

    Article  Google Scholar 

  15. P. Manaee, Z. Valefi and M. Goodarz, The Effect of Bond Coat Type on the Stab Resistance of Al2O3–13 wt%TiO2 Plasma Sprayed Ceramic Coating on Aramid Fabrics, Surf. Int., 2020 https://doi.org/10.1016/j.surfin.2020.100432

    Article  Google Scholar 

  16. Ş Yılmaz, M. Ipek, G.F. Celebi and C. Bindal, The Effect of Bond Coat on Mechanical Properties of Plasma-Sprayed Al2O3 and Al2O3–13wt%TiO2 Coatings on AISI 316L Stainless Steel, Vacuum, 2005, 77(3), p 315-321.

    Article  Google Scholar 

  17. N.H.N. Yusoff, M.J. Ghazali, M.C. Isa, A.R. Daud and A. Muchtar, Effects of Powder Size and Metallic Bonding Layer on Corrosion Behaviour of Plasma-Sprayed Al2O3-13%TiO2 Coated Mild Steel in Fresh Tropical Seawater, Ceram. Int., 2013, 39(3), p 2527-2533.

    Article  CAS  Google Scholar 

  18. J.A. Wahab, M.J. Ghazali, Z. Sajuri, Y. Otsuka and A.F.S. Baharin, Effects of Micro-Grooves on Tribological Behaviour of Plasma-Sprayed Alumina-13% Titania Coatings, Ceram. Int., 2017, 43(8), p 6410-6416.

    Article  CAS  Google Scholar 

  19. M. Wang, Z. Zhou, Y. Yi and Z. Wang, Thermal-Shock Resistance of Plasma Sprayed Al2O3-13wt%TiO2 Coating Evaluated by Residual Strength Method, Surf. Coat. Tech., 2019, 375, p 888-893.

    Article  CAS  Google Scholar 

  20. Z. Zou, F. Zhou, L. Wang and Y. Wang, Tribological Property of Plasma-Sprayed Al2O3-13wt%TiO2 Coatings onto Resin-Based Composites, Appl. Surf. Sci., 2018, 431, p 75-80.

    Article  CAS  Google Scholar 

  21. J. Zhang, J. He, Y. Dong, X. Li and D. Yan, Microstructure Characteristics of Al2O3–13wt%TiO2 Coating Plasma spray Deposited with Nanocrystalline Powders, J. Mater. Pro. Tech., 2008, 197(1-3), p 31-35.

    Article  CAS  Google Scholar 

  22. Y. Wang, W. Tian, Y. Yang, C.G. Li and L. Wang, Investigation of Stress Field and Failure Mode of Plasma Sprayed Al2O3–13%TiO2 Coatings Under Thermal Shock, Mater. Sci. Eng. A, 2009, 516(1–215), p 103-110.

    Article  Google Scholar 

  23. Y. Wang, W. Tian, T. Zhang and Y. Yang, Microstructure, Spallation and Corrosion of Plasma Sprayed Al2O3–13%TiO2 Coatings, Corr. Sci., 2009, 51(12), p 2924-2931.

    Article  CAS  Google Scholar 

  24. D. Yan, J. He, X. Li, Y. Liu and H. Liu, The Corrosion Behavior of Plasma-Sprayed Ni/Al–Al2O3 and Ni/Al–Al2O3+13 wt.% TiO2 Graded Ceramic Coatings in 5%HCl Solution, Surf. Coat. Tech., 2003, 176(1), p 30-36.

    Article  CAS  Google Scholar 

  25. W. Aihua, Z. Beidi, T. Zengyi, M. Xianyao and Ch. Xudong, Thermal-Shock Behaviour of Plasma-Sprayed Al2O3-13wt.%TiO2 Coatings on Al-Si Alloy Influenced by Laser Remelting, Surf. Coat. Tech., 1993, 57, p 169-172.

    Article  Google Scholar 

  26. N.H.N. Yusoff, M.J. Ghazali, M.C. Isa, A.R. Daud and S.M. Forghani, Optimization of Plasma Spray Parameters on the Mechanical Properties of Agglomerated Al2O3–13%TiO2 Coated Mild Steel, Mater. Des., 2012, 39, p 504-508.

    Article  CAS  Google Scholar 

  27. P. Bansal, N.P. Padture and A. Vasiliev, Improved Interfacial Mechanical Properties of Al2O3-13wt%TiO2 Plasma-Sprayed Coatings Derived from Nanocrystalline Powders, Act. Mater, 2003, 51(1011), p 2959-2970.

    Article  CAS  Google Scholar 

  28. W. Tian, Y. Wang, Y. Yang and C. Li, Toughening and Strengthening Mechanism of Plasma Sprayed Nanostructured Al2O3–13wt.%TiO2 Coatings, Surf. Coat. Tech., 2009, 204(5), p 642-649.

    Article  CAS  Google Scholar 

  29. W. Tian, Y. Wang, T. Zhang and Y. Yang, Sliding Wear and Electrochemical Corrosion Behavior of Plasma Sprayed Nanocomposite Al2O3–13%TiO2 Coatings, Mater. Chem. Phys., 2009, 118(1), p 37-45.

    Article  CAS  Google Scholar 

  30. W. Tian, Y. Wang and Y. Yang, Fretting Wear Behavior of Conventional and Nanostructured Al2O3–13wt.%TiO2 Coatings Fabricated by Plasma Spray, Wear, 2008, 265(11-12), p 1700-1707.

    Article  CAS  Google Scholar 

  31. D. Wang, Z. Tian, L. Shen, Z. Liu and Y. Huang, Microstructural Characteristics and Formation Mechanism of Al2O3–13wt% TiO2 Coatings Plasma-Sprayed with Nanostructured Agglomerated Powders, Surf. Coat. Tech., 2009, 203(10–11), p 1298-1303.

    Article  CAS  Google Scholar 

  32. Y. Wang, W. Tian and Y. Yang, Thermal Shock Behavior of Nanostructured and Conventional Al2O3/13wt.%TiO2 Coatings Fabricated by Plasma Spraying, Surf. Coat. Tech., 2007, 201(18), p 7746-7754.

    Article  CAS  Google Scholar 

  33. Y. Feng, J. Fang, J. Wu, K. Gu and P. Liu, Mechanical and Tribological Properties of Plasma Sprayed Graphene Nanosheets/Al2O3+13 wt%TiO2 Composite Coating, Tribol. Int., 2020, 146, p 106233. https://doi.org/10.1016/j.triboint.2020.106233

    Article  CAS  Google Scholar 

  34. S. Mehar, S.G. Sapate, N. Vashishtha and P. Bagde, Effect of Y2O3 Addition on Tribological Properties of Plasma Sprayed Al2O3-13%TiO2 Coating, Ceram. Int., 2020, 46(8B), p 11799-11810.

    Article  CAS  Google Scholar 

  35. A. Wahab and M.J. Ghazali, Erosion Resistance of Laser Textured Plasma-Sprayed Al2O3-13%TiO2 Coatings on Mild Steel, Wear, 2019, 432–433, 202937. https://doi.org/10.1016/j.wear.2019.202937

    Article  CAS  Google Scholar 

  36. A. Richter, L.M. Berger, Y.J. Sohn, S. Conze and R. Vaßen, Impact of Al2O3-40wt.%TiO2 Feedstock Powder Characteristics on the Sprayability, Microstructure and Mechanical Properties of Plasma Sprayed Coatings, J. Eur. Ceram. Soc., 2019, 39(16), p 5391-5402.

    Article  CAS  Google Scholar 

  37. J. Sure, A.R. Shankar, B.N. Upadhyay and U.K. Mudali, Microstructural Characterization of Plasma Sprayed Al2O3-40wt%TiO2 Coatings on High Density Graphite with Different Post-Treatments, Surf. Coat. Tech., 2012, 206(23), p 4741-4749.

    Article  CAS  Google Scholar 

  38. H. Luo, P. Song, A. Khan, J. Feng and J.S. Lu, Alternant Phase Distribution and Wear Mechanical Properties of an Al2O3-40wt%TiO2 Composite Coating, Ceram. Int., 2017, 43(9), p 7295-7304.

    Article  CAS  Google Scholar 

  39. H. Luo, P. Song, A. Khan, J. Feng and J.S. Lu, Effects of the Metal-Ceramic Transition Region on the Mechanical Properties and Crack Propagation behavior of an Al2O3-40wt%TiO2 Coating, Surf. Coat. Tech., 2017, 321, p 200-212.

    Article  CAS  Google Scholar 

  40. J.J. Kang, B.S. Xu, H.D. Wang and C.B. Wang, Influence of Spraying Parameters on the Microstructure and Properties of Plasma-sprayed Al2O3/40%TiO2 Coating, Phys. Proc., 2013, 50, p 169-176.

    Article  CAS  Google Scholar 

  41. T.S. Rajesh and R.V. Rao, Experimental Investigation and Parameter Optimization of Al2O3-40%TiO2 Atmospheric Plasma Spray Coating on SS316 Steel Substrate, Mater. Today Proc., 2018, 5(2–1), p 5012-5020.

    Article  Google Scholar 

  42. K. Yang, J. Li, Q. Wang, Z. Li, Y. Jiang and Y. Bao, Effect of Laser Remelting on Microstructure and Wear Resistance of Plasma Sprayed Al2O3-40%TiO2 Coating, Wear, 2019, 426–427(A), p 314-318.

    Article  CAS  Google Scholar 

  43. S. Mehar, S.G. Sapate, N. Vashishtha, A. Rathod and P. Bagde, Investigation on Structural, Mechanical and Tribological Properties of Plasma Sprayed Al2O3-40%TiO2 Coating, Mater. Today Proc., 2021, 38(5), p 2525-2531.

    Article  CAS  Google Scholar 

  44. K.G. Girisha, K.V.S. Rao and C.D. Prasad, Slurry Erosion Resistance of Martenistic Stainless Steel with Plasma Sprayed Al2O3-40%TiO2 Coatings, Mater. Today Proc., 2018, 5(2), p 7388-7393.

    Article  CAS  Google Scholar 

  45. N.V. Tuan, N.T. Anh, L.T. Quy and P.T. Ha, Influence of Plasma Spraying Parameters on Microstructure and Corrosion Resistance of Cr3C2-25NiCr Cermet Carbide Coating, Anti-Corros. Methods Mater., 2019, 66(3), p 336-342.

    Article  Google Scholar 

  46. S. Ono, J.P. Brodholt and G.D. Price, First-Priciples Simulation of High Pressure Polymorphs in MgAl2O4, Phys. Chem. Min., 2008, 35, p 381-386.

    Article  CAS  Google Scholar 

  47. W.H. Baur and A.A. Khan, Rutile-Type Compounds. IV. SiO2, GeO2 and a comparison with other Rutile-Type structures, Acta. Crys., 1971, B21, p 2133-2139.

    Article  Google Scholar 

  48. E.P. Song, J. Ahn, S. Lee and N.J. Kim, Microstructure and Wear Resistance of Nanostructured Al2O3–8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders, Surf. Coat. Tech., 2006, 201, p 1309-1315.

    Article  CAS  Google Scholar 

  49. R. Yilmaz, A.O. Kurt, A. Demir and Z. Tatli, Effects of TiO2 on the Mechanical Properties of the Al2O3–TiO2 Plasma Sprayed Coating, J. Eur. Ceram. Soc., 2007, 27(2-3), p 1319-1323.

    Article  CAS  Google Scholar 

  50. S. Das, The Al-O-Ti (Aluminum-Oxygen-Titanium) System, J. Phas. Equilibria., 2002, 23(6), p 525-536.

    Article  CAS  Google Scholar 

  51. L.M. Berger, K. Sempf, Y. Sohn and R. Vaßen, Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40%TiO2 Coatings, Therm. Spray Tech., 2018, 27, p 654-666.

    Article  CAS  Google Scholar 

  52. S. Hoffmann, S. Norberg and M. Yoshimura, Melt Synthesis of Al2TiO5 Containing Composites and Reinvestigation of the Phase Diagram Al2O3–TiO2 by Powder x-ray Diffraction, J. Electroceram., 2006, 16, p 327-330.

    Article  CAS  Google Scholar 

  53. F. Vargas, H. Ageorges, P. Fournier, P. Fauchais and M.E. López, Mechanical and Tribological Performance of Al2O3-TiO2 Coatings Elaborated by flame and Plasma Spraying, Surf. Coat. Tech., 2010, 205(4), p 1132-1136.

    Article  CAS  Google Scholar 

  54. A.F. Kanta, M.P. Planche and G. Montavon, Electrochemical Characterisations of Al2O3–13%TiO2 Coated by Atmospheric Plasma Spray, Plasma Chem. Plasma Process., 2011, 31, p 867-877.

    Article  CAS  Google Scholar 

  55. P.T. Ha, N.V. Tuan, N.T. Anh, P.T. Ly, D.B. Thuy, T.V. Trung and L.Q. Cuong, Cr3C2-25NiCr Cermet Coating: Preparation, PTFE Sealant, Wear and Corrosion Resistances, Therm. Spray Tech., 2021, 30, p 716-724.

    Article  Google Scholar 

  56. M. AkhtariZavareh, A.A.D.M. Sarhan, P. AkhtariZavareh, B.B.A. Razak, W.J. Basirun and M.B.C. Ismail, Development and Protection Evaluation of Two New, Advanced Ceramic Composite Thermal Spray Coatings, Al2O3–40TiO2 and Cr3C2–20NiCr on Carbon Steel Petroleum Oil Piping, Ceram. Int., 2016, 42(4), p 5203-5210.

    Article  Google Scholar 

  57. F. Shao, K. Yang, H. Zhao, Ch. Liu, L. Wang and S. Tao, Effects of Inorganic Sealant and Brief Heat Treatments on Corrosion Behavior of Plasma Sprayed Cr2O3–Al2O3 Composite Ceramic Coatings, Surf. Coat. Tech., 2015, 276, p 8-15.

    Article  CAS  Google Scholar 

  58. M.E. Ozagem, B.Tribollet, Electrochemical Impedance Spectroscopy, The Electrochemical Society Series”, vol. 22, pp. 61-72. John Wiley and Sons (2008)

  59. BT-Lab & EC-Lab, Data Analysis and Processes, Version 11.00, (2015), p.38.

Download references

Acknowledgments

The authors are grateful for financial support by the Vietnam National Foundation for Science and Technology Development (NAFOSTED, Grant 104.03-2019.21).

Author information

Authors and Affiliations

Authors

Contributions

TNV: Conceptualization, project administration. TAN: Review and editing. HPT: Writing and editing. LPT: Formal analysis. PNT: Formal analysis. QLT: Investigation, review and editing.

Corresponding author

Correspondence to Tuan Anh Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, T.N., Nguyen, T.A., Thi, H.P. et al. Fabrication and Characterization of Plasma-Sprayed Cr3C2-25 Cr/Al2O3-40TiO2 Duplex Coating. J Therm Spray Tech 31, 2112–2125 (2022). https://doi.org/10.1007/s11666-022-01423-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-022-01423-y

Keywords

Navigation