Skip to main content

Advertisement

Log in

Paleodepositional and Hydrocarbon Source-Rock Characteristics of the Sonari Succession (Paleocene), Barmer Basin, NW India: Implications from Petrography and Geochemistry

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Lignite deposits, associated with Akli Formation (Paleocene), from the Sonari mine of Barmer Basin, Rajasthan, were investigated by applying organic petrography, palynofacies, and geochemistry in order to understand the origin, nature, and character of these lignite-bearing deposits and to assess their thermal maturation and hydrocarbon generation potentiality. The studied samples contained an abundance of huminite group of macerals (av. 54.0 vol.%) and relatively higher abundance of C27 and C29 n-alkane hydrocarbons. High carbon preference index (CPI: 5.03–9.44) and high terrigenous aquatic ratio (TAR: 5.09–20.01), together with the liptinite macerals (av. 10.3 vol.%), inform the prevailing contribution of higher plants. Besides, the significant amount of detrohuminites (av. 26.8 vol.%) and non-biostructure phytoclasts (av. 42.25%), along with hopanoids, denote a meaningful herbaceous plants input and/or high level of tissue destruction (bacterial activity). The terpenoid composition was mainly constituted by pentacyclic triterpenoids and A-ring-degraded angiosperm-derived compounds and diterpenoids. The inertinite contents (av. 22.3 vol.%) and the pristane/phytane (Pr/Ph) ratio imply the variation in the redox conditions during the accumulation. The petrographic indices revealed that the paleo-flora were accumulated in a limno-telmatic condition, with fluctuating groundwater level. Likewise, the palynofacies data displayed that the peat was deposited in dysoxic-suboxic settings under proximal condition. Subsequently, the incidence of dinoflagellate cysts in the studied samples suggests a marine intrusion. The considerable total of pyrite (up to 16.7 vol.%, comprising framboidal) suggests a coastal swamp condition (marginal marine). The thermal alteration index (TAI: av. 2.15), Tmax (av. 411 °C for lignite and 414 °C for associated shale) and the gross calorific values (av. 4601 cal/g) showed the immaturity of the studied samples. The lignites contained low to moderate ash yields (av. 12.57 wt.%) and moisture (av. 12.79 wt.%) contents, whereas the carbondaf (daf = dry ash-free basis) contents were high (av. 67.22 wt.%) and corroborated well with the inertinite group of macerals. The fuel ratio varied from 0.77 to 1.32. The volatile matter yielddaf (av. 51.09 wt.%), fixed carbondaf (av. 48.91 wt.%), and the oxygendaf (av. 22.16 wt.%) contents were moderately high. The total organic carbon contents (TOC: 1.17–54.84 wt.%, av. 24.78 wt.%) and hydrogen index values (HI: 32–361 mg HC/g rock) exhibit that the studied samples mostly have type III kerogen and show an excellent potentiality to generate gaseous hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. * 1 ha (hectare) = 0.01 km.2.

References

  • Abbassi, S., Edwards, D. S., George, S. C., Volk, H., Mahlstedt, N., di Primio, R., & Horsfield, B. (2016). Petroleum potential and kinetic models for hydrocarbon generation from the upper cretaceous to paleogene latrobe group coals and shales in the Gippsland Basin, Australia. Organic Geochemistry, 91, 54–67.

    Article  Google Scholar 

  • ASTM (American Society for Testing and Material), (1993a). Standard Test Method for Sulphur in the Analysis Sample of Coal and Coke, D 3177–89, Annual Book of ASTM standards, Petroleum Products, Lubricants and Fossil Fuels, Vol. 05.05, Gaseous Fuels; Coal and Coke, Philadelphia, PA, pp. 306–309.

  • ASTM (American Society for Testing and Material), (1993b). Standard Test Method for Carbon and Hydrogen in the Analysis Sample of Coal and Coke, D 3178–89, Annual Book of ASTM standards, Petroleum Products, Lubricants and Fossil Fuels, vol. 05.05, Gaseous Fuels; Coal and Coke, Philadelphia, PA, pp. 310–313.

  • ASTM (American Society for Testing and Material), (1993c). Standard Test Method for Nitrogen in the Analysis Sample of Coal and Coke, D 3179, Annual Book of ASTM standards, Petroleum Products, Lubricants and Fossil Fuels, vol. 05.05, Gaseous Fuels; Coal and Coke, ASTM, Philadelphia, PA, pp. 314–318.

  • ASTM (American Society for Testing and Material), (1996). Standard Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic Bomb Calorimeter, ASTM D2015.

  • ASTM (American Society for Testing and Material), Standard Classification of Coals by Rank, ASTM International, West Conshohocken, PA, ASTM D388–12.

  • Batten, D. J., (1996a). Palynofacies and palaeoenvironmental interpretation. In: Jansonius, J., Mc Gregor, D.C. (Eds.), Palynology: Principles and Applications. AASP 3, 1011–1064.

  • Batten, D. J. (1996b). Palynofacies and petroleum potential. In: Jansonius, J., Mc Gregor, D.C. (Eds.), Palynology: Principles and Applications. AASP 3, 1065–1084.

  • Batten, D. J., & Stead, D. T. (2005). Palynofacies analysis and its stratigraphic application. In E. A. M. Koutsoukos (Ed.), Applied stratigraphy (pp. 203–226). Springer.

    Chapter  Google Scholar 

  • Bechtel, A., Karayiğit, A. I., Sachsenhofer, R. F., İnaner, H., Christanis, K., & Gratzer, R. (2014). Spatial and temporal variability in vegetation and coal facies as reflected by organic petrological and geochemical data in the middle miocene çayirhan coal field (Turkey). International Journal of Coal Geology, 134–135, 46–60.

    Article  Google Scholar 

  • Bechtel, A., Sachsenhofer, R. F., Kolcon, I., Gratzer, R., Otto, A., & Püttmann, W. (2002). Organic geochemistry of the lower miocene oberdorf lignite (Styrian Basin, Austria): Its relation to petrography, palynology and the palaeoenvironment. International Journal of Coal Geology, 51, 31–57.

    Article  Google Scholar 

  • BIS (Bureau of Indian Standard), (2003). Methods of Test for Coal and Coke (2nd revision of IS: 1350). Part I, Proximate analysis. Bureau of Indian Standard, New Delhi, pp. 1–29.

  • Biswas, S. K. (2012). Status of petroleum exploration in India. Proceedings of Indian National Science Academy, 78, 475–494.

    Google Scholar 

  • Bladon, A., Clarke, S. M., & Burley, S. D. (2015). Complex rift geometries resulting from inheritance of pre-existing structures: Insights and regional implications from the barmer basin rift. Journal of Structural Geology, 71, 136–154.

    Article  Google Scholar 

  • Bordenave, M. L. (1993). Applied petroleum geochemistry (p. 524). Editions Technip.

    Google Scholar 

  • Bordenave, M. L., & Durand, B. (1993). Evolution of ideas and concepts in geochemistry. In M. L. Bordenave (Ed.), Applied petroleum geochemistry (pp. 5–14). Editions Technip.

    Google Scholar 

  • Bourbonniere, R. A., & Meyers, P. A. (1996). Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352–359.

    Article  Google Scholar 

  • Bray, E., & Evans, E. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15.

    Article  Google Scholar 

  • Calder, J. H., Gibbing, M. R., & Mukhopadhyay, P. K. (1991). Peat formation in a Westphalian B piedmont setting, Cumberland Basin, Nova Scotia: Implication for the maceral-based interpretation of rheotrophic and raised paleomires. Bulletin de la Société Géologique de France, 162, 283–298.

    Google Scholar 

  • Carvalho, M. A., Mendonça Filho, J. G., & Menezes, T. R. (2006). Paleoenvironmental reconstruction based on palynofacies analysis of the Aptian-Albian succession of the Sergipe Basin, North Eastern Brazil. Marine Micropaleontology, 59, 56–81.

    Article  Google Scholar 

  • Castañeda, I. S., Werne, J. P., Johnson, T. C., & Filley, T. R. (2009). Late quaternary vegetation history of southeast Africa: The molecular isotopic record from Lake Malawi. Palaeogeography Palaeoclimatology Palaeoecology, 275, 100–112.

    Article  Google Scholar 

  • Chetia, R., Mathews, R. P., Singh, P. K., & Sharma, A. (2022). Conifer-mixed tropical rainforest in the Indian Paleogene: New evidences from terpenoid signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110980.

    Article  Google Scholar 

  • Compton, P. M. (2009). The geology of the Barmer Basin, Rajasthan, India, and the origins of its major oil reservoir, the fatehgarh formation. Petroleum Geoscience, 15, 117–130.

    Article  Google Scholar 

  • Cranwell, P. A. (1973). Chain length distribution of n-alkanes from lake sediment in relation to post-glacial environmental change. Freshwater Biology, 3, 259–265.

    Article  Google Scholar 

  • Cranwell, P. A. (1977). Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology, 20, 205–221.

    Article  Google Scholar 

  • Crosdale, P. J. (1993). Coal maceral ratios as indicators of environment of deposition: Do they work for ombrogenous mires? Organic Geochemistry, 20, 809–997.

    Article  Google Scholar 

  • Dai, S., Bechtel, A., Eble, C. F., Flores, R. M., French, D., Graham, I. T., Hood, M. M., Hower, J. C., Korasidis, V. A., Moore, T. A., Püttmann, W., Wei, Q., Zhao, L., & O’Keefe, J. M. K. (2020). Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 219, 103383.

    Article  Google Scholar 

  • Dai, S., Ren, D., Li, S., Zhao, L., & Zhang, Y. (2007). COAL facies evolution of the main minable coal-bed in the Heidaigou Mine, Jungar Coalfield, Inner Mongolia, northern China. Science in China Series D Earth Sciences, 50, 144–152.

    Article  Google Scholar 

  • Das Gupta, S. K. (1975). A revision of the Mesozoic-Tertiary stratigraphy of the Jaisalmer basin Rajasthan. Indian Journal of Earth Sciences, 2, 77–94.

    Google Scholar 

  • Davis, R. C., Noon, S. W., & Harrington, J. (2007). The petroleum potential of tertiary coals from Western Indonesia: Relationship to mire type and sequence stratigraphic setting. International Journal of Coal Geology, 70, 35–52.

    Article  Google Scholar 

  • Dickens, G. R., O’Neil, J. R., Rea, D. K., & Owen, R. M. (1995). Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography and Paleoclimatology, 10(6), 965–971.

    Article  Google Scholar 

  • Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., & Eglinton, G. (1978). Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216–222.

    Article  Google Scholar 

  • Diessel, C. F. K. (1986). On the correlation between coal facies and depositional environments. Proc. 20th Newcastle Symp. The University of Newcastle, pp. 19–22.

  • Diessel, C. F. K. (1992). Coal-bearing depositional systems (p. 721). Springer-Verlag.

    Book  Google Scholar 

  • Doković, N., Mitrović, D., Životić, D., Španić, D., & Troskot-Čorbić, T. (2015). Preliminary organic geochemical study of lignite from the Smederevsko Pomoravlje field (Kostolac Basin, Serbia) – Reconstruction of geological evolution and potential for rational utilization. Journal of the Serbian Chemical Society, 80(2), 575–588.

    Article  Google Scholar 

  • Dolson, J. D., Burley, S. D., Sunder, V. R., Kothari, V., Naidu, B. N., Whiteley, N. P., Farrimond, P., Taylor, A., Direen, N., & Ananthakrishnan, B. (2015). The discovery petroleum geology of the Barmer Basin, Rajasthan, India. American Association of Petroleum Geologists Bulletin, 99, 433–465.

    Article  Google Scholar 

  • Duan, Y., Zheng, C. Y., & Wu, B. X. (2010). Hydrogen isotopic characteristics and their genetic relationships for individual n-alkanes in plants and sediments from Zoigê marsh sedimentary environment. Science in China Series D Earth Sciences, 53, 1329–1334.

    Article  Google Scholar 

  • Dutta, S., Mallick, M., Bertram, N., Greenwood, P. F., & Mathews, R. P. (2009). Terpenoid composition and class of tertiary resins from India. International Journal of Coal Geology, 80, 44–50.

    Article  Google Scholar 

  • Dutta, S., Mathews, R. P., Singh, B. D., Tripathi, S. K. M., Singh, A., Saraswati, P. K., Banerjee, S., & Mann, U. (2011). Petrology, palynology and organic geochemistry of Eocene lignite of Matanomadh, Kutch Basin, western India: Implications to depositional environment and hydrocarbon source potential. International Journal of Coal Geology, 85, 91–102.

    Article  Google Scholar 

  • Dwivedi, A. K. (2016). Petroleum exploration in India - A perspective and endeavours. Proceedings of the Indian National Science Academy, 82(3), 881–903.

    Article  Google Scholar 

  • Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156, 1322–1335.

    Article  Google Scholar 

  • El Atfy, H., Ghassal, B. I., Maher, A., Hosny, A., Mostafa, A., & Littke, R. (2019). Palynological and organic geochemical studies of the Upper Jurassic-Lower Cretaceous successions, Western Desert, Egypt: Implications for paleoenvironment and hydrocarbon source rock potential. International Journal of Coal Geology, 211, 103207.

    Article  Google Scholar 

  • Espitalié, J., Deroo, G., & Marquis, F. (1985). La pyrolyse Rock-Eval et ses applications (part I). Revue de l’Institut Francais du Petrole, 40, 563–579.

    Article  Google Scholar 

  • Farrimond, P., Naidu, B. S., Burley, S. D., Dolson, J., Whiteley, N., & Kothari, V. (2015). Geochemical characterization of oils and their source rocks in the Barmer Basin, Rajasthan, India. Petroleum Geoscience, 21, 301–321.

    Article  Google Scholar 

  • Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.

    Article  Google Scholar 

  • Ficken, K. J., Wooller, M. J., Swain, D. L., Street-Perrott, F. A., & Eglinton, G. (2002). Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: A novel multi-proxy approach. Paleogeography, Paleoclimatology, Paleoecology, 177, 137–149.

    Article  Google Scholar 

  • Flores, D. (2002). Organic facies and depositional palaeoenvironment of lignites from Rio Major Basin (Portugal). International Journal of Coal Geology, 48, 181–195.

    Article  Google Scholar 

  • Gagosian, R. B., Peltzer, E. T., & Merrill, J. T. (1987). Long-range transport of terrestrially derived lipids in aerosols from the South-Pacific. Nature, 325, 800–804.

    Article  Google Scholar 

  • Garcia-Vallés, M., Vendrell-Saz, M., & Pradell-Cara, T. (2000). Organic geochemistry (Rock-Eval) and maturation rank of the Garumnian coal in the Central Pyrenees (Spain). Fuel, 79, 505–513.

    Article  Google Scholar 

  • Goossens, H., de Leeuw, J. W., Schenck, P. A., & Brassell, S. C. (1984). Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 312, 440–442.

    Article  Google Scholar 

  • Grohmann, S., Fietz, S.W., Littke, R., Daher, S.B., Romero-Sarmiento, M.F., Nader, F.H., & Baudin, F. (2018). Source rock characterization of Mesozoic to Cenozoic organic matter rich marls and shales of the Eratosthenes Seamount, Eastern Mediterranean Sea. Oil & Gas Science and Technology - Revue d'IFP Energies nouvelles, 73, 49 doi; https://doi.org/10.2516/ogst/2018036.

  • Hakimi, M. H., Abdullah, W. H., Sia, S. G., & Makeen, Y. M. (2013). Organic geochemical and petrographic characteristics of tertiary coals in the northwest Sarawak, Malaysia: Implications for palaeoenvironmental conditions and hydrocarbon generation potential. Marine Petroleum Geology, 48, 31–46.

    Article  Google Scholar 

  • Hall, P. B., & Douglas, A. G. (1983). The distribution of cyclic alkanes in two lacustrine deposits. In M. Bjorøy (Ed.), Advances in organic geochemistry (pp. 576–587). John Wiley.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sealevels since the Triassic. Science, 235, 1156–1167.

    Article  Google Scholar 

  • Hatcher, P. G., & Clifford, D. J. (1997). The organic geochemistry of coal: From plant material to coal. Organic Geochemistry, 27, 251–274.

    Article  Google Scholar 

  • Hoffmann, B., Kahmen, A., Cernusak, L. A., Arndt, S. K., & Sachse, D. (2013). Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia. Organic Geochemistry, 62, 62–67.

    Article  Google Scholar 

  • Hunt, J. M. (1991). Generation of gas and oil from coal and other terrestrial organic matter. Organic Geochemistry, 17, 673–680.

    Article  Google Scholar 

  • Hunt, J. M. (1996). Petroleum geochemistry and geology (p. 743). Freeman.

    Google Scholar 

  • ICCP, (2001). The new inertinite classification (ICCP System 1994), International Committee for Coal and Organic Petrology. Fuel, 80, 459-471

  • Imbus, S. W., & McKirdy, D. M. (1993). Organic geochemistry of Precambrian sedimentary rocks. In M. H. Engel & S. A. Macko (Eds.), Organic geochemistry (pp. 657–684). Plenum Press.

    Chapter  Google Scholar 

  • ISO 7404–2, (2009). Methods for the petrographic analysis of bituminous coal and anthracite— Part 2: methods of preparing coal samples. International organization for standardization, ISO, Geneva, 8 pp.

  • ISO 7404–3, (2009). Methods for the petrographic analysis of bituminous coal and anthracite— Part 3: Methods of determining maceral group composition. International organization for standardization, ISO, Geneva, 4 pp.

  • ISO 7404–5, (2009). Methods for the petrographic analysis of bituminous coal and anthracite— Part 5: methods of determining microscopically the reflectance of vitrinite. International organization for standardization, ISO, Geneva, 11 pp.

  • Kalaitzidis, S., Bouzinos, A., Papazisimou, S., & Christanis, K. (2004). A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology, 57, 243–263.

    Article  Google Scholar 

  • Kalaitzidis, S., Papazisimou, S., & Christanis, K. (2001). Forming conditions of the Graikas lignite, Northern Peloponnese. Bulletin of the Geological Society of Greece, 34, 1195–1204.

    Article  Google Scholar 

  • Kalkreuth, W., Kotis, T., Papanikolaou, C., & Kokkinakis, P. (1991). The geology and coal petrology of a Miocene lignite profile at Meliadi Mine, Katerini, Greece. International Journal of Coal Geology, 17, 51–67.

    Article  Google Scholar 

  • Karayigit, A. I., Oskay, R. G., & Çelik, Y. (2021). Mineralogy, petrography, and rock-eval pyrolysis of late oligocene coal seams in the Malkara coal field from the Thrace Basin (NW Turkey). International Journal of Coal Geology, 244, 103814.

    Article  Google Scholar 

  • Karrer, W., Cherbuliez, E., & Eugster, C. H. (1977). Konstitution und vorkommen der organischen Pflanzenstoffe (exclusive Alkaloide) Erga¨nzungsband (Vol. 1). Birkhäuser Verlag.

    Book  Google Scholar 

  • Katz, B. J. (1983). Limitations of ‘Rock-Eval’ pyrolysis for typing organic matter. Organic Geochemistry, 4, 195–199.

    Article  Google Scholar 

  • Kennett, J. P., & Stott, L. D. (1991). Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions at the end of the paleocene. Nature, 353, 319–322.

    Article  Google Scholar 

  • Killops, S. D., Woolhouse, A. D., Weston, R. J., & Cook, R. A. (1994). A geochemical appraisal of oil generation in the Taranaki Basin, New Zealand. American Association of Petroleum Geologists Bulletin, 78, 1560–1585.

    Google Scholar 

  • Koeverden, J. H. V., Karlsen, D. A., & Backer-Owe, K. (2011). Carboniferous non-marine source rocks from Spitsbergen and Bjørnøya: Comparison with the western Arctic. Journal of Petroleum Geology, 34, 53–66.

    Article  Google Scholar 

  • Kotarba, M., Clayton, J., Rice, D., & Wagner, M. (2002). Assessment of hydrocarbon source rock potential of polish bituminous coals and carbonaceous shales. Chemical Geology, 184, 11–35.

    Article  Google Scholar 

  • Kumar, A., Singh, A., Paul, D., & Kumar, A. (2020). Evaluation of hydrocarbon potential with insight into climate and environment present during deposition of the Sonari lignite, Barmer Basin Rajasthan. Energy and Climate Change, 1, 100006.

    Article  Google Scholar 

  • Lafargue, E., Marquis, F., & Pillot, D. (1998). Rock-Eval–6 applications in hydrocarbon exploration, production and soil contamination studies. Oil Gas Science and Technology, 53, 421–437.

    Google Scholar 

  • Littke, R., Horsfield, B., & Leythaeuser, D. (1989). Hydrocarbon distribution in coals and dispersed organic matter of different maceral compositions and maturities. Geologische Rundschau, 78, 391–410.

    Article  Google Scholar 

  • Mansour, A., Gentzis, T., Carvajal-Ortiz, H., Tahoun, S. S., Elewa, A. M. T., & Mohamed, O. (2020a). Source rock evaluation of the cenomanian raha formation, Bakr oil field, Gulf of Suez, Egypt: Observations from palynofacies, RGB-based sporomorph microscopy, and organic geochemistry. Journal of Marine and Petroleum Geology, 122, 104661.

    Article  Google Scholar 

  • Mansour, A., Wagreich, M., Gentzis, T., Ocubalidet, S., Tahoun, S. S., & Elewa, A. M. T. (2020b). Depositional and organic carbon-controlled regimes during the Coniacian-Santonian event: First results from the southern Tethys (Egypt). Journal of Marine and Petroleum Geology, 115, 104285.

    Article  Google Scholar 

  • Mathews, R. P., Singh, B. D., & Singh, V. P. (2018). Evaluation of organic matter, hydrocarbon source, and depositional environment of onshore Warkalli sedimentary sequence from Kerala-Konkan Basin, south India. Journal of the Geological Society of India, 92(4), 407–418.

    Article  Google Scholar 

  • Mathews, R. P., Singh, B. D., Singh, V. P., Singh, A., Singh, H., Shivanna, M., Dutta, S., Mendhe, V. A., & Chetia, R. (2020). Organo-petrographic and geochemical characteristics of Gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. Geoscience Frontiers, 11, 965–988.

    Article  Google Scholar 

  • Mavridou, E., Antoniadis, P., Khanaqa, P., Riegel, W., & Gentzis, T. (2003). Paleoenvironmental interpretation of the Amynteon-Ptolemaida lignite deposit on northern Greece based on its petrographic composition. International Journal of Coal Geology, 56, 253–268.

    Article  Google Scholar 

  • Mendhe, V. A., Bannerjee, M., Varma, A. K., Kamble, A. D., Mishra, S., & Singh, B. D. (2017a). Fractal and pore dispositions of coal seams with significance to coalbed methane plays of East Bokaro, Jharkhand, India. Journal of Natural Gas Science and Engineering, 38, 412–433.

    Article  Google Scholar 

  • Mendhe, V. A., Mishra, S., Varma, A. K., Bannerjee, M., Singh, B. D., & Singh, V. P. (2018). Geochemical and petrophysical characteristics of Permian shale gas reservoirs of Raniganj Basin, West Bengal, India. International Journal of Coal Geology, 188, 1–24.

    Article  Google Scholar 

  • Mendhe, V. A., Mishra, S., Varma, A. K., Kamble, A. D., Bannerjee, M., & Sutay, T. M. (2017b). Gas reservoir characteristics of the lower Gondwana Shales in Raniganj Basin of Eastern India. Journal of Petroleum Science and Engineering, 149, 649–664.

    Article  Google Scholar 

  • Mendonça Filho, J. G., & Gonçalves, P. A. (2017). Organic matter: concepts and definitions, Chapter 1. In I. Suarez-Ruiz & J. G. Mendonça Filho (Eds.), Geology: Current and future developments. the role of organic petrology in the exploration of conventional and unconventional hydrocarbon systems 1 (pp. 1–33). United Arab Emirates: Bentham Science Publishers.

    Google Scholar 

  • Mendonça Filho, J. G., Mendonça, J. O., Menezes, T. R., Oliveira, A. D., Carvalho, M. A., Santanna, A. J., & Souza, J. T. (2010). Palinofácies. In: Carvalho, I.S. (Ed.), Paleontologia (3rd ed.) 1, Interciência, Rio de Janeiro, pp. 379–413.

  • Mendonça Filho, J. G., Menezes, T. R., & Mendonça, J. O. (2011). Organic composition (palynofacies analysis). Chapter 5, ICCP Training course on dispersed organic matter, pp. 33–81.

  • Mendonça Filho, J. G., Menezes, T. R., Mendonça, J. O., Oliveira, A. D., Silva, T. F., Rondon, N. F., & Da Silva, F. S. (2012). Organic Facies: palynofacies and organic geochemistry approaches. In D. Panagiotaras (Ed.), Geochemistry– earth’s system processes. InTech.

    Google Scholar 

  • Mishra, P. C., Singh, N. P., Sharma, D. C., Upadhyay, H., Kakroo, A. K., & Saini, M. L. (1993). Lithostratigraphy of western Rajasthan. Unpublished Oil and Natural Gas Corporation Report, p. 125.

  • Moore, T. A., & Shearer, J. C. (2003). Peat/coal type and depositional environment- are they related? International Journal of Coal Geology, 56, 233–252.

    Article  Google Scholar 

  • Nagori, M. L., & Khosla, S. C. (2019). Early Eocene ostracoda from the akli formation of Barmer Basin, Rajasthan. Journal of Palaeontological Society of India, 64(1), 11–26.

    Google Scholar 

  • Naidu, B. S., Burley, S. D., Dolson, J., Farrimond, P., Sunder, V. R., Kothari, V., & Mohapatra, P. (2017). Hydrocarbon generation and migration modeling in the barmer basin of Western Rajasthan, India: lessons for exploration in rift basins with late-stage inversion, uplift and tilting. In M. A. Abu Ali, I. Moretti, & H. M. Nordgård Bolås (Eds.), Petroleum systems analysis. American Association of Petroleum Geologists Memoir.

    Google Scholar 

  • Ndip, E. A., Agyingi, C. M., Nton, M. E., Hower, J. C., & Oladunjoye, M. A. (2019). Organic petrography and petroleum source rock evaluation of the Cretaceous Mamfe Formation, Mamfe basin, southwest Cameroon. International Journal of Coal Geology, 202, 27–37.

    Article  Google Scholar 

  • Ourisson, G., & Albrecht, P. (1992). Hopanoids. 1. Geohopanoids: The most abundant natural products on Earth? Accounts of Chemical Research, 25(9), 398–402.

    Article  Google Scholar 

  • Pacton, M., Gorin, G. E., & Vasconcelos, C. (2011). Amorphous organic matter – experimental data on formation and the role of microbes. Review of Palaeobotany and Palynology, 166, 253–267.

    Article  Google Scholar 

  • Pareek, H. S. (1981). Basin configuration and sedimentary stratigraphy of western Rajasthan. Journal of the Geological Society of India, 22, 517–527.

    Google Scholar 

  • Paul, S., & Dutta, S. (2016). Terpenoid composition of fossil resins from western India: New insights into the occurrence of resin-producing trees in early paleogene equatorial rainforest of Asia. International Journal of Coal Geology, 167, 65–74.

    Article  Google Scholar 

  • Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin, 70, 318–386.

    Google Scholar 

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system from source to trap. American Association of Petroleum Geologists Memoir.

    Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide (p. 1132). Cambridge University.

    Google Scholar 

  • Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, K., Cardott, B. J., Misz-Kennan, M., Rodrigues, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., & Wagner, N. (2017). Classification of liptinite – ICCP System 1994. International Journal of Coal Geology, 169, 40–61.

    Article  Google Scholar 

  • Poynter, J. (1989). Molecular stratigraphy: The recognition of paloeclimatic signals in organic geochemical data. University of Bristol.

    Google Scholar 

  • Prasad, V., Uddandam, P. R., Agrawal, S., Bajpai, S., Singh, I. B., Mishra, A. K., Sharma, A., Kumar, M., & Verma, P. (2020). Biostratigraphy, palaeoenvironment and sea level changes during pre-collisional (Palaeocene) phase of the Indian plate: palynological evidence from Akli Formation in Giral Lignite Mine, Barmer Basin, Rajasthan, Western India. Episodes, 43(1), 476–488.

    Article  Google Scholar 

  • Pu, Y., Zhang, H. C., Lei, G. L., Chang, F. Q., Yang, M. S., Zhang, W. X., Lei, Y. B., Yang, L. Q., & Pang, Y. Z. (2010). Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS3. Science China: Earth Sciences, 53, 863–870.

    Article  Google Scholar 

  • Pu, Y., Zhang, H. C., Wang, Y. L., Lei, G. L., Nace, T., & Zhang, S. P. (2011). Climatic and environmental implications from n-alkanes in glacially eroded lake sediments in Tibetan Plateau: An example from Ximen Co. Chinese Science Bulletin, 56, 1503–1510.

    Article  Google Scholar 

  • Radhwani, M., Bechtel, A., Singh, V. P., Singh, B. D., & Mannaï-Tayech, B. (2018). Petrographic, palynofacies and geochemical characteristics of organic matter in the Saouef Formation (NE Tunisia): Origin, paleoenvironment, and economic significance. International Journal of Coal Geology, 187, 114–130.

    Article  Google Scholar 

  • Rai, J., Singh, A., & Pandey, D. K. (2013). Early to Middle Albian age calcareous nannofossils from Pariwar Formation of Jaisalmer Basin, Rajasthan, western India and their significance. Current Science, 105(11), 1604–1611.

    Google Scholar 

  • Ramanujam, C. G. K. (1995). Pteridophytes during the Tertiary period of south India as revealed by their characteristic sporomorphs. The Palaeobotanist, 44, 152–156.

    Google Scholar 

  • Rana, R. S., Kumar, K., Loyal, R. S., Sahni, A., Rose, K. D., Mussell, J., Singh, H., & Kulshreshtha, S. K. (2006). Selachians from the early Eocene Kapurdi Formation (Fuller’s Earth), Barmer district, Rajasthan. Journal of the Geological Society of India, 67(4), 509–522.

    Google Scholar 

  • Rana, R. S., Kumar, K., Singh, H., & Rose, K. D. (2005). Lower vertebrates from the late Palaeocene-earliest Eocene Akli Formation Giral Lignite Mine Barmer District western India. Current Science, 89, 1606–1613.

    Google Scholar 

  • Rommerskirchen, F., Eglinton, G., & Dupont, L. (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochemistry, Geophysics, Geosystem, 4, 1101. https://doi.org/10.1029/2003GC000541

    Article  Google Scholar 

  • Rullkötter, J., Peakman, T. M., & ten Haven, H. L. (1994). Early diagenesis of terrigenous triterpenoids and its implications for petroleum geochemistry. Organic Geochemistry, 21, 215–233.

    Article  Google Scholar 

  • Sachsenhofer, R. F., Bechtel, A., Reischenbacher, D., & Weiss, A. (2003). Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps, Austria) and implications on source rocks in pull-apart basins. Marine and Petroleum Geology, 20, 83–110.

    Article  Google Scholar 

  • Sahni, A., Saraswati, P. K., Rana, R. S., Kumar, K., Singh, H., Alimohmmadian, H., Sahni, N., Rose, K. D., Singh, L., & Smith, T. (2006). Temporal constraints and depositional environments of the Vastan lignite sequence, Gujarat: Analogy for the Cambay Shale hydrocarbon source rock. Journal of Petroleum Geology, 15, 1–20.

    Google Scholar 

  • Sarkar, S. (2014). Holocene Variations in the Strength of the Indian Monsoon System: A Combined Biomarker and Stable Isotope Approach. Institut für Erd- und Umweltwissenschaften, Universität Potsdam. Ph.D. thesis, p.114.

  • Scotese, C. P., & Golanka, J. (1992). Paleogeographic atlas, PALEOMAP progress report 20–0692 (p. 34). University of Texas.

    Google Scholar 

  • Scott, A. C. (2002). Coal petrology and the origin of coal macerals: A way ahead? International Journal of Coal Geology, 50, 119–134.

    Article  Google Scholar 

  • Scott, A. C., & Jones, T. P. (1994). The nature and influence of fire in Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 106, 91–112.

    Article  Google Scholar 

  • Shivanna, M., Singh, A., Singh, B. D., Singh, V. P., Matthews, R. P., & Souza, P. A. (2017). Peat biomass degradation: Evidence from fungal and faunal activity in carbonized wood from the Eocene sediments of western India. Palaeoworld, 26, 531–542.

    Article  Google Scholar 

  • Silva, M. B., Kalkreuth, W., & Holz, M. (2008). Coal petrology of coal seams from the Leão-Butiá Coalfield, Lower Permian of the Paraná Basin, Brazil: Implications for coal facies interpretations. International Journal of Coal Geology, 73, 331–358.

    Article  Google Scholar 

  • Singh, A., Mahesh, S., Singh, H., Tripathi, S. K. M., & Singh, B. D. (2013). Characterization of Mangrol lignite (Gujarat), India: Petrography, palynology, and palynofacies. International Journal of Coal Geology, 120, 82–94.

    Article  Google Scholar 

  • Singh, A., Shivanna, M., Mathews, R. P., Singh, B. D., Singh, H., Singh, V. P., & Dutta, S. (2017a). Paleoenvironment of Eocene lignite bearing succession from Bikaner-Nagaur Basin, western India: Organic petrography, palynology, palynofacies and geochemistry. International Journal of Coal Geology, 181, 87–102.

    Article  Google Scholar 

  • Singh, H. (2015). Palynofloral investigation of the Akli Formation (Palaeocene) of Giral Lignite Mine, Barmer District. Rajasthan. Geophytology, 45(2), 209–214.

    Google Scholar 

  • Singh, H., & Tripathi, S. K. M. (2010). Fungal remains from the Early Palaeogene subsurface sediments of Barakha, Barmer district, western Rajasthan. India. Geophytology, 39(1–2), 9–15.

    Google Scholar 

  • Singh, P. K., Rajak, P. K., Singh, M. P., Singh, V. K., Naik, A. S., & Singh, A. K. (2016). Peat swamps at Giral lignite field of Barmer basin, Rajasthan, Western India: Understanding the evolution through petrological modeling. International Journal of Coal Science and Technology, 3(2), 148–164.

    Article  Google Scholar 

  • Singh, P. K., Singh, M. P., & Singh, A. K. (2010). Petro-chemical characterization and evolution of Vastan lignite, Gujarat, India. International Journal of Coal Geology, 82, 1–16.

    Article  Google Scholar 

  • Singh, V. P., Singh, B. D., Mathews, R. P., Singh, A., Mendhe, V. A., Singh, P. K., Mishra, S., Dutta, S., Shivanna, M., & Singh, M. P. (2017b). Investigation on the lignite deposits of Surkha mine (Saurashtra Basin, Gujarat), western India: Their depositional history and hydrocarbon generation potential. International Journal of Coal Geology, 183, 78–99.

    Article  Google Scholar 

  • Singh, V. P., Singh, B. D., Singh, A., Singh, M. P., Mathews, R. P., Dutta, S., Mendhe, V. A., Mahesh, S., & Mishra, S. (2017c). Depositional palaeoenvironment and economic potential of Khadsaliya lignite deposits (Saurashtra Basin), western India: Based on petrographic, palynofacies and geochemical characteristics. International Journal of Coal Geology, 171, 223–242.

    Article  Google Scholar 

  • Singh, V. P., Singh, B. D., Mathews, R. P., Mendhe, V. A., Agnihotri, P., Mishra, S., Radhwani, M., Dutta, S., Subramanian, K. A., Singh, A., & Singh, H. (2021). Petrographical-geochemical characteristics and floral-faunal compositions of the Valia lignite deposits from Cambay Basin (Gujarat), western India. International Journal of Coal Geology, 248, 103866.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., Van Duin, A. C. T., Hollander, D., Kohnen, M. E. L., & De Leeuw, J. W. (1995). Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids. Geochimica et Cosmochimica. Acta, 59(24), 5141–5157.

    Article  Google Scholar 

  • Sisodia, M. S., & Singh, U. K. (2000). Depositional environment and hydrocarbon prospects of the Barmer Basin, Rajasthan, India. Nafta, 51, 309–326.

    Google Scholar 

  • Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S. M., John, C. M., & Zachos, J. C. (2007). Environmental precursors to light carbon input at the Paleocene/Eocene boundary. Nature, 450, 1218–1221.

    Article  Google Scholar 

  • Sluijs, A., Pross, J., & Brinkhuis, H. (2005). From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Science Reviews, 68, 281–315.

    Article  Google Scholar 

  • Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damst, J. S., Dickens, G. R., Huber, M., Reichart, G.-J., Stein, R., Matthiessen, J., Lourens, L. J., Pedentchouk, N., Backman, J., & Moran, K. (2006). Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441, 610–613.

    Article  Google Scholar 

  • Snowdon, L. R. (1991). Oil from type III organic matter: Resinite revisited. Organic Geochemistry, 17, 743–747.

    Article  Google Scholar 

  • Snowdon, L. R. (1995). Rock-Eval Tmax suppression: Documentation and amelioration. American Association of Petroleum Geologists Bulletin, 79, 1337–1348.

    Google Scholar 

  • Staplin, F. L. (1969). Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bulletin of Canadian Petroleum Geology, 17, 47–66.

    Google Scholar 

  • Staplin, F. L. (1977). Interpretation of thermal history from colour of particulate organic matter - a review. Palynology, 1, 9–18.

    Article  Google Scholar 

  • Stefanova, M. (2004). Molecular indicators for Taxodium dubium as coal progenitor of “Chukurovo” lignite, Bulgaria. In: Proceedings of the 10th International Congress. Bulletin of the Geological Society of Greece, XXXVI, 342–347.

  • Stock, A. T., Littke, R., Lücke, A., Zieger, L., & Thielemann, T. (2016). Miocene depositional environment and climate in western Europe: The lignite deposits of the Lower Rhine Basin, Germany. International Journal of Coal Geology, 157, 2–18.

    Article  Google Scholar 

  • Strobl, S. A. I., Sachsenhofer, R. F., Bechtel, A., & Meng, Q. (2014). Paleoenvironment of the Eocene coal seam in the Fushun basin (NE China): Implications from petrography and geochemistry. International Journal of Coal Geology, 134–135, 24–37.

    Article  Google Scholar 

  • Suárez-Ruiz, I., Flores, D., Mendonça Filho, J. G., & Hackley, P. C. (2012). Review and update of the applications of organic petrology: Part 1, Geological applications. International Journal of Coal Geology, 22, 54–112.

    Article  Google Scholar 

  • Dev, S. (1989). Terpenoids. In J. W. Rowe (Ed.), Natural products of wood plants 1 (pp. 691–807). Springer.

    Chapter  Google Scholar 

  • Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542–545.

    Article  Google Scholar 

  • Sykes, R. (2001). Depositional and rank controls on the petroleum potential of coaly source rocks. In K. C. Hill & T. Bernecker (Eds.), Eastern Australasian basins symposium, a refocused energy perspective for the future (pp. 591–601). Petroleum Exploration Society of Australia.

    Google Scholar 

  • Sykes, R., & Snowdon, L. (2002). Guidelines for assessing the petroleum potential of coaly source rocks using Rock-Eval. Organic Geochemistry, 33(12), 1441–1455.

    Article  Google Scholar 

  • Sykes, R., Volk, H., George, S. C., Ahmed, M., Higgs, K. E., Johansen, P. E., & Snowdon, L. R. (2014). Marine influence helps preserves the oil potential of coaly source rocks: Eocene Mangahewa Formation, Taranaki Basin, New Zealand. Organic Geochemistry, 66, 140–163.

    Article  Google Scholar 

  • Sýkorová, I., Pickel, W., Christanis, K., Wolf, M., Taylor, G. H., & Flores, D. (2005). Classification of huminite— ICCP System 1994. International Journal of Coal Geology, 62, 85–106.

    Article  Google Scholar 

  • Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology (p. 704). Gebrüder Borntraeger.

    Google Scholar 

  • ten Haven, H. L., de Leeuw, J. W., Rullcötter, J., & Sinninghe Damsté, J. S. (1987). Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330, 641–643.

    Article  Google Scholar 

  • ten Haven, H. L., Peakman, T. M., & Rullkotter, J. (1992). Δ2-Triterpenes: Early intermediates in the diagenesis of terrigenous triterpenoids. Geochimica et Cosmochimica Acta, 56, 1993–2000.

    Article  Google Scholar 

  • Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed., p. 669). Springer.

    Book  Google Scholar 

  • Tripathi, S. K. M., Kumar, M., & Srivastava, D. (2009). Palynology of lower palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): Palaeoenvironmental and palaeoclimatic implications. Geologica Acta, 7(1–2), 147–160.

    Google Scholar 

  • Tripathi, S. K. M., Singh, U. K., & Sisodia, M. S. (2003). Palynological investigation and environmental interpretation on Akli Formation (Late Palaeocene) from Barmer Basin, western Rajasthan, India. The Palaeobotanist, 52, 87–95.

    Google Scholar 

  • Tyson, R. V. (1995). Sedimentary organic matter (p. 615). Organic Facies and Palynofacies. Chapman & Hall.

    Book  Google Scholar 

  • Varma, A. K., Hazra, B., Chinara, I., Mendhe, V. A., & Dayal, A. M. (2015). Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India. Marine and Petroleum Geology, 59, 480–490.

    Article  Google Scholar 

  • Varma, A. K., Mishra, D. K., Samad, S. K., Prasad, A. K., Panigrahi, D. C., Mendhe, V. A., & Singh, B. D. (2018). Geochemical and Organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin, India. International Journal of Coal Geology, 186, 97–114.

    Article  Google Scholar 

  • Volkman, J. K., & Maxwell, J. R. (1986). Acyclic isoprenoids as biological markers. In R. B. Johns (Ed.), Biological markers in the sedimentary record (pp. 1–46). Elsevier.

    Google Scholar 

  • Vu, T. T. A., Zink, K.-G., Mangelsdorf, K., Skyes, R., Wilkes, H., & Horsfield, B. (2009). Changes in bulk properties and molecular compositions within New Zealand Coal Band solvent extracts from early diagenetic to catagenetic maturity levels. Organic Geochemistry, 40, 963–977.

    Article  Google Scholar 

  • Waples, D. W., & Machihara, T. (1991). Biomarkers for geologists: A practical guide to the application of steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists Methods in Exploration, No.9, 19–40.

  • Ward, C. R. (2002). Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology, 50, 135–168.

    Article  Google Scholar 

  • Wilkins, W. T., & George, S. C. (2002). Coal as a source rock for oil: A review. International Journal of Coal Geology, 50, 317–361.

    Article  Google Scholar 

  • Wüst, R. A. J., Hawke, M. I., & Bustin, R. M. (2001). Comparing maceral ratios from tropical peat lands with assumptions from coal studies: Do classic coal petrographic interpretation methods have to be discarded? International Journal of Coal Geology, 48, 115–132.

    Article  Google Scholar 

  • Zachos, J. C., Rohl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., & Kroon, D. (2005). Rapid acidification of the Ocean during the Paleocene-eocene thermal maximum. Science, 308, 1611–1615.

    Article  Google Scholar 

  • Zachos, J. C., Wara, M. W., Bohaty, S., Delaney, M. L., Petrizzo, M. R., Brill, A., Bralower, T. J., & Premoli Silva, I. (2003). A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. Science, 302, 1551–1554.

    Article  Google Scholar 

  • Zachos, J. C., Lohmann, K. C., Walker, J. C. G., & Wise, S. W. (1993). Abrupt climate change and transient climates during the Palaeogene: A marine perspective. The Journal of Geology, 101, 191–213.

    Article  Google Scholar 

  • Zhang, M., Ji, L., Wu, Y., & He, C. (2015). Palynofacies and geochemical analysis of the Triassic Yanchang Formation, Ordos Basin: Implications for hydrocarbon generation potential and the paleoenvironment of continental source rocks. International Journal of Coal Geology, 152, 159–176.

    Article  Google Scholar 

  • Zhang, S., Tang, S., Tang, D., Pan, Z., & Yang, F. (2010). The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. International Journal of Coal Geology, 81, 117–127.

    Article  Google Scholar 

  • Źivotić, D., Bechtel, A., Sachsenhofer, R., Gratzer, R., Radić, D., Obradović, M., & Stojanović, K. (2014). Petrological and organic geochemical properties of lignite from the Kolubara and Kostolac basins, Serbia: Implication on Grindability Index. International Journal of Coal Geology, 131, 344–362.

    Article  Google Scholar 

  • Životić, D., Jovančićević, B., Schwarzbauer, J., Cvetković, O., Gržetić, I., Ercegovac, M., Stojanović, K., & Šajnović, A. (2010). The petrographical and organic geochemical composition of coal from the East field, Bogovina Basin (Serbia). International Journal of Coal Geology, 81, 227–241.

    Article  Google Scholar 

Download references

Acknowledgments

The Director, BSIP (Lucknow), is thanked for constant support, encouragement and permitting the publication of this paper (BSIP/RDCC/23/2021-22). Authors are grateful to the officials of Rajasthan State Mines and Minerals Limited (RSMML, Jaipur) and Sonari Lignite Mine Project (Barmer), Govt. of Rajasthan, for their assistance and cooperation during the field work. We acknowledge the help of Dr. Mahesh Shivanna (Ex-BSRA) and Mr. V.P. Singh (Ex-TO) of BSIP during the field visit and laboratory analyses, respectively. We are also thankful to Prof. Suryendu Dutta (Dept. of Earth Science, Indian Institute of Technology Bombay, Mumbai) for extending support for the Rock-Eval pyrolysis and biomarker analyses. VAM and MB are thankful to the Director, CIMFR (Dhanbad), and SM is thankful to the Director, NIO (Goa), for associating with this work. VPS acknowledge SERB, Dept. of Science and Technology (Govt. of India), for granting the National Postdoctoral Fellowship (PDF/2018/000883). We are also grateful to Dr. John Carranza for his editorial support and to all anonymous reviewers for their valuable suggestions and constructive comments that helped us to improve the earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram P. Singh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Supplementary file2 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Singh, B.D., Mathews, R.P. et al. Paleodepositional and Hydrocarbon Source-Rock Characteristics of the Sonari Succession (Paleocene), Barmer Basin, NW India: Implications from Petrography and Geochemistry. Nat Resour Res 31, 2943–2971 (2022). https://doi.org/10.1007/s11053-022-10079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-022-10079-y

Keywords

Navigation