Skip to main content
Log in

Electrodeposition of Si Films from SiO2 in Molten CaCl2-CaO: The Dissolution-Electrodeposition Mechanism and Its Epitaxial Growth Behavior

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Molten salt electrodeposition of crystalline silicon (Si) films from silicon dioxide (SiO2) in molten calcium chloride (CaCl2)-calcium oxide (CaO) has been systematically investigated. The dissolution-electrodeposition mechanism was studied by cyclic voltammetry (CV), in situ X-ray diffraction (XRD), and in situ Raman spectroscopy. The results show that different silicate ions, including SiO32−, SiO44−, would be generated in molten salt and could be influenced by the molar ratios of additive SiO2 and CaO, as well as the electrolytic parameters. In particular, with the increase of electrodeposition time, SiO44− increased as the dominated silicate ions in molten salt. Furthermore, different current densities, time and substrates would also have vital influences on the electrodeposition process and the electrodeposited Si products. Si products with tunable morphology have been deposited on different substrates by adjusting the electrodeposition conditions. The deposited crystalline Si films exhibit homogeneous epitaxial structures, in particular, the epitaxial Si film grown on the 110-oriented Si wafer possesses uniform inverted pyramid structure. The ohmic resistivity test and microstructure analysis results show that the electrodeposited epitaxial crystalline Si films have the similar properties and characteristics as their single crystal Si wafer substrates. In general, the investigation of the dissolution-electrodeposition mechanism and its epitaxial growth behavior helps the progress of this one-step CaO-assisted dissolution-electrodeposition process for the production of epitaxial Si films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Stüwe, D. Mager, D. Biro, and J.G. Korvink: Adv. Mater., 2015, vol. 27, pp. 599–626.

    Article  CAS  Google Scholar 

  2. F. Priolo, T. Gregorkiewicz, M. Galli, and T.F. Krauss: Nat. Nanotechnol., 2014, vol. 9, pp. 19–32.

    Article  CAS  Google Scholar 

  3. C.H. Yang, R.C.C. Leon, J.C.C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J.C. Lemyre, K.W. Chan, K.Y. Tan, F.E. Hudson, K.M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, and A.S. Dzurak: Nature, 2020, vol. 580, pp. 350–54.

    Article  CAS  Google Scholar 

  4. S. Pizzini: Sol. Energy Mater. Sol. Cells, 2010, vol. 94, pp. 1528–33.

    Article  CAS  Google Scholar 

  5. S. Maldonado: ACS Energy Lett., 2020, vol. 5, pp. 3628–32.

    Article  CAS  Google Scholar 

  6. G. Bye and B. Ceccaroli: Sol. Energy Mater. Sol. Cells, 2014, vol. 130, pp. 634–46.

    Article  CAS  Google Scholar 

  7. L. Kazmerski: Polycrystalline and Amorphous Thin Films and Devices, Academic Press, New York, NY, 1980, pp. 135–52.

  8. M. Rohde, M. Zelt, O. Gabriel, S. Neubert, S. Kirner, D. Severin, T. Stolley, B. Rau, B. Stannowski, and R. Schlatmann: Thin Solid Films, 2014, vol. 558, pp. 337–43.

    Article  CAS  Google Scholar 

  9. H. Huang, L. Lu, J. Wang, J. Yang, S.F. Leung, Y. Wang, D. Chen, X. Chen, G. Shen, D. Li, and Z. Fan: Energy Environ. Sci., 2013, vol. 6, pp. 2965–71.

    Article  CAS  Google Scholar 

  10. C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J.J. Merkel, P. Plocica, and S. Steffens: Sol. Energy Mater. Sol. Cells, 2013, vol. 119, pp. 112–23.

    Article  CAS  Google Scholar 

  11. D. Amkreutz, J. Haschke, T. Häring, F. Ruske, and B. Rech: Sol. Energy Mater. Sol. Cells, 2014, vol. 123, pp. 13–16.

    Article  CAS  Google Scholar 

  12. T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsuda: J. Non-Cryst. Solids, 1996, vol. 198–200, pp. 940–44.

    Article  Google Scholar 

  13. T. Munisamy and A.J. Bard: Electrochim. Acta, 2010, vol. 55, pp. 3797–3803.

    Article  CAS  Google Scholar 

  14. J. Gu, E. Fahrenkrug, and S. Maldonado: J. Am. Chem. Soc., 2013, vol. 135, pp. 1684–87.

    Article  CAS  Google Scholar 

  15. N. Borisenko, S.Z. Abedin, and F. Endres: J. Phys. Chem. B, 2006, vol. 110, pp. 6250–56.

    Article  CAS  Google Scholar 

  16. U. Cohen: J. Electron. Mater., 1977, vol. 6, pp. 607–43.

    Article  CAS  Google Scholar 

  17. G.M. Rao, D. Elwell, and R.S. Feigelson: J. Electrochem. Soc., 1980, vol. 127, p. 1940.

    Article  CAS  Google Scholar 

  18. R. Boen and J. Bouteillon: J. Appl. Electrochem., 1983, vol. 13, pp. 277–88.

    Article  CAS  Google Scholar 

  19. E.J. Frazer and B.J. Welch: Electrochim. Acta, 1977, vol. 22, pp. 1179–82.

    Article  CAS  Google Scholar 

  20. G.M. Haarberg, L. Famiyeh, A.M. Martinez, and K.S. Osen: Electrochim. Acta, 2013, vol. 100, pp. 226–28.

    Article  CAS  Google Scholar 

  21. K. Yasuda, K. Maeda, T. Nohira, R. Hagiwara, and T. Homma: J. Electrochem. Soc., 2016, vol. 163, pp. D95-99.

    Article  CAS  Google Scholar 

  22. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: J. Electrochem. Soc., 2015, vol. 162, pp. D444-48.

    Article  CAS  Google Scholar 

  23. H. Xie, H. Zhao, J. Liao, H. Yin, and A.J. Bard: Electrochim. Acta, 2018, vol. 269, pp. 610–16.

    Article  CAS  Google Scholar 

  24. U. Cohen and R.A. Huggins: J. Electrochem. Soc., 1976, vol. 123, pp. 381–83.

    Article  CAS  Google Scholar 

  25. G.M. Rao, D. Elwell, and R.S. Feigelson: J. Electrochem. Soc., 1981, vol. 128, pp. 1708–11.

    Article  CAS  Google Scholar 

  26. D. Elwell and G. Rao: Electrochim. Acta, 1982, vol. 27, pp. 673–76.

    Article  CAS  Google Scholar 

  27. D. Elwell and G.M. Rao: J. Appl. Electrochem., 1988, vol. 18, pp. 15–22.

    Article  CAS  Google Scholar 

  28. J. De Lepinay, J. Bouteillon, S. Traore, D. Renaud, and M. Barbier: J. Appl. Electrochem., 1987, vol. 17, pp. 294–302.

    Article  Google Scholar 

  29. K. Yasuda, K. Maeda, R. Hagiwara, T. Homma, and T. Nohira: J. Electrochem. Soc., 2017, vol. 164, pp. D67-71.

    Article  CAS  Google Scholar 

  30. K.S. Osen, A.M. Martinez, S. Rolseth, H. Gudbrandsen, M. Juel, and G.M. Haarberg: ECS Trans., 2010, vol. 33, pp. 429–38.

    Article  CAS  Google Scholar 

  31. A.L. Bieber, L. Massot, M. Gibilaro, L. Cassayre, P. Taxil, and P. Chamelot: Electrochim. Acta, 2012, vol. 62, pp. 282–89.

    Article  CAS  Google Scholar 

  32. J. Xu and G.M. Haarberg: High Temp. Mater. Processes, 2013, vol. 32, pp. 97–105.

    Article  CAS  Google Scholar 

  33. Y. Sakanaka and T. Goto: Electrochim. Acta, 2015, vol. 164, pp. 139–42.

    Article  CAS  Google Scholar 

  34. S.I. Zhuk, A.V. Isakov, A.P. Apisarov, O.V. Grishenkova, V.A. Isaev, E.G. Vovkotrub, and Y.P. Zaykov: J. Electrochem. Soc., 2017, vol. 164, pp. H5135–H5138.

    Article  CAS  Google Scholar 

  35. G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361–64.

    Article  CAS  Google Scholar 

  36. X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 43, pp. 733–36.

    Article  CAS  Google Scholar 

  37. S. Li, X. Zou, K. Zheng, X. Lu, C. Chen, X. Li, Q. Xu, and Z. Zhou: Metall. Mater. Trans. B, 2018, vol. 49, pp. 790–802.

    Article  CAS  Google Scholar 

  38. D. Wang, G. Qiu, X. Jin, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2006, vol. 45, pp. 2384–88.

    Article  CAS  Google Scholar 

  39. E. Juzeliunas and D.J. Fray: Chem. Rev., 2020, vol. 120, pp. 1690–1709.

    Article  CAS  Google Scholar 

  40. W. Xiao and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215–28.

    Article  CAS  Google Scholar 

  41. D.A. Wenz, I. Johnson, and R.D. Wolson: J. Chem. Eng. Data, 1969, vol. 14, pp. 250–52.

    Article  CAS  Google Scholar 

  42. G.J. Janz and R.P. Tomkins: Corrosion, 1979, vol. 35, pp. 485–504.

    Article  CAS  Google Scholar 

  43. A. Seidell: Solubilities of Inorganic and Organic Compounds: A Compilation of Quantitative Solubility Data from the Periodical Literature, D. Van Nostrand Co., New York, NY, 1919, p. 485–504.

  44. T. Nohira, K. Yasuda, and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397–401.

    Article  CAS  Google Scholar 

  45. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863–86.

    Article  CAS  Google Scholar 

  46. W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, and G.Z. Chen: ChemPhysChem, 2006, vol. 7, pp. 1750–58.

    Article  CAS  Google Scholar 

  47. W. Xiao, X. Jin, and G.Z. Chen: J. Mater. Chem. A, 2013, vol. 1, p. 10243.

    Article  CAS  Google Scholar 

  48. T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K. Masuda, and T. Homma: Electrochem., 2013, vol. 81, pp. 559–65.

    Article  CAS  Google Scholar 

  49. X. Yang, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1337–44.

    Article  CAS  Google Scholar 

  50. S.K. Cho, F.F. Fan, and A.J. Bard: Angew. Chem. Int. Ed., 2012, vol. 51, pp. 12740–12744.

    Article  CAS  Google Scholar 

  51. J. Zhao, H. Yin, T. Lim, H. Xie, H. Hsu, F. Forouzan, and A.J. Bard: J. Electrochem. Soc., 2016, vol. 163, pp. D506-14.

    Article  CAS  Google Scholar 

  52. X. Zou, L. Ji, J. Ge, D.R. Sadoway, E.T. Yu, and A.J. Bard: Nat. Commun., 2019, vol. 10, pp. 5772–79.

    Article  CAS  Google Scholar 

  53. W. Xiao, X. Wang, H. Yin, H. Zhu, X. Mao, and D. Wang: RSC Adv., 2012, vol. 2, pp. 7588–93.

    Article  CAS  Google Scholar 

  54. X. Zou, L. Ji, X. Yang, T. Lim, E.T. Yu, and A.J. Bard: J. Am. Chem. Soc., 2017, vol. 139, pp. 16060–16063.

    Article  CAS  Google Scholar 

  55. X. Yang, L. Ji, X. Zou, T. Lim, J. Zhao, E.T. Yu, and A.J. Bard: Angew. Chem. Int. Ed., 2017, vol. 56, pp. 15078–15082.

    Article  CAS  Google Scholar 

  56. Y. Ma, T. Yamamoto, K. Yasuda, and T. Nohira: J. Electrochem. Soc., 2021, vol. 168(4), p. 040530.

    Article  CAS  Google Scholar 

  57. T. Gayathri, N.M. Sundaram, and R.A. Kumar: J. Bionanosci., 2015, vol. 9, pp. 409–23.

    Article  CAS  Google Scholar 

  58. W. Tang, G.S. Li, Z.Y. Pang, X.Y. Xu, K. Zhu, Q. Xu, X.L. Zou, and X.G. Lu: Metall. Mater. Trans. B, 2021, vol. 52, pp. 1985–96.

    Article  CAS  Google Scholar 

  59. D. Virgo, B.O. Mysen, and I. Kushiro: Science, 1980, vol. 208, pp. 1371–73.

    Article  CAS  Google Scholar 

  60. Y. Suzuki, Y. Inoue, M. Yokota, and T. Goto: J. Electrochem. Soc., 2019, vol. 166(13), pp. D564-68.

    Article  CAS  Google Scholar 

  61. K. Tang, X.Q. Yu, J.P. Sun, H. Li, and X.J. Huang: Electrochim. Acta, 2011, vol. 56, pp. 4869–75.

    Article  CAS  Google Scholar 

  62. A.J. Bard and L.R. Faulkner: Electrochemical Methods: Principles and Applications, Wiley, New York, NY, 2001, pp. 161–78.

  63. J.D. Li, H. Ren, X. Yin, J.L. Lu, and J. Li: Russ. J. Electrochem., 2019, vol. 55, pp. 392–400.

    Article  CAS  Google Scholar 

  64. C. Wang, J. Zhang, Z. Liu, K. Jiao, G. Wang, J. Yang, and K. Chou: Metall. Mater. Trans. B, 2017, vol. 48, pp. 328–34.

    Article  CAS  Google Scholar 

  65. H. Li, J. Liang, S. Xie, R.G. Reddy, and L. Wang: High Temp. Mater. Proc., 2018, vol. 37, pp. 921–28.

    Article  CAS  Google Scholar 

  66. J.L. Xu and G.M. Haarberg: High Temp. Mater. Proc., 2013, vol. 32, pp. 97–105.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Natural Science Foundation of China (Grant Nos. 52022054, 51974181, and 52004157), the Shanghai Postdoctoral Excellence Program (2021159), the Shanghai Rising-Star Program (19QA1403600), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (TP2019041), and the “Shuguang Program” supported by the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (21SG42) for financial support.

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongya Pang, Guangshi Li or Xingli Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Pang, Z., Tang, W. et al. Electrodeposition of Si Films from SiO2 in Molten CaCl2-CaO: The Dissolution-Electrodeposition Mechanism and Its Epitaxial Growth Behavior. Metall Mater Trans B 53, 2800–2813 (2022). https://doi.org/10.1007/s11663-022-02565-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02565-8

Navigation