Skip to main content
Log in

Fabrication of BaZr0.80Y0.20O3 – δ Sputtering Target for Thin-Film Proton Conducting Oxides

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A systematic work was carried out to fabricate a phase-pure sputter target for thin film deposition of BaZr0.80Y0.20O3 – δ. The current study mainly involves two parts; i.e. determination of the ideal parameters for phase-pure BaZr0.80Y0.20O3 – δ synthesis, and the production of sputter target with a 2-inch diameter using deformable compaction die. For the synthesis, the effect of chelating and polymerization agents on the Pechini synthesis of BaZr0.80Y0.20O3 – δ was investigated in detail. Ethylenediaminetetraacetic acid and citric acid as chelating agents were employed with different fractions, while ethylene glycol was preferred as a polymerization agent. The effect of calcination temperature ranging between 1000 and 1200°C was also investigated so as to eliminate the secondary phase formation. Subsequent to powder synthesis, the BaZr0.80Y0.20O3 – δ sputter target having over 90% of its theoretical density was produced following powder pressing using deformable compaction die up to 150 MPa and sintering at 1500°C for 10 hours. BaZr0.80Y0.20O3 – δ sputter target produced was then tested for a thin film deposition in a magnetron sputtering system for 12 h. Investigations carried out on the thin films deposited revealed that fully dense and highly textured crystalline BaZr0.80Y0.20O3 – δ films could be deposited with the target produced in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. A. Rodionov, O. I. Silyukov, T. D. Utkina, et al., Russ. J. Gen. Chem. 82, 1191 (2012). https://doi.org/10.1134/S1070363212070018

    Article  CAS  Google Scholar 

  2. A. S. Farlenkov, M. I. Vlasov, N. M. Porotnikova, et al., Int. J. Hydrogen Energy 45, 23455 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.148

    Article  CAS  Google Scholar 

  3. Y. Okuyama, S. Nagamine, A. Nakajima, et al., RSC Adv. 6, 34019 (2016). https://doi.org/10.1039/C5RA23560J

    Article  CAS  Google Scholar 

  4. T. I. Chupakhina, N. I. Matskevich, G. V. Bazuev, et al., Russ. J. Inorg. Chem. 55, 1002 (2010). https://doi.org/10.1134/S003602361007003X

    Article  CAS  Google Scholar 

  5. Z. Wei, J. Wang, X. Yu, et al., Int. J. Hydrogen Energy 46, 23868 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.188

    Article  CAS  Google Scholar 

  6. M. V. Kalinina, M. Y. Arsent’ev, N. S. Kotlyarov, et al., Glas. Phys. Chem. 47, 366 (2021). https://doi.org/10.1134/S1087659621040106

    Article  CAS  Google Scholar 

  7. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 662 (2021). https://doi.org/10.1134/S0036023621050193

    Article  CAS  Google Scholar 

  8. E. Vøllestad, R. Strandbakke, M. Tarach, et al., Nat. Mater. 18, 752 (2019). https://doi.org/10.1038/s41563-019-0388-2

    Article  CAS  PubMed  Google Scholar 

  9. S. Choi, T. C. Davenport, and S.M. Haile, Energy Environ. Sci. 12, 206 (2019). https://doi.org/10.1039/C8EE02865F

    Article  CAS  Google Scholar 

  10. S. S. Hashim, M. R. Somalu, K. S. Loh, et al., Int. J. Hydrogen Energy 43, 15281 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.045

    Article  CAS  Google Scholar 

  11. V. P. Gorelov, V. B. Balakireva, and A. V. Kuz’min, Russ. J. Inorg. Chem. 63, 930 (2018). https://doi.org/10.1134/S0036023618070070

    Article  CAS  Google Scholar 

  12. N. A. Tarasova, A. O. Galisheva, and I.E. Animitsa, Russ. J. Gen. Chem. 89, 1662 (2019). https://doi.org/10.1134/S107036321908019X

    Article  CAS  Google Scholar 

  13. R. Pornprasertsuk, O. Kosasang, K. Somroop, et al., Solid State Sci. 13, 1429 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.04.015

    Article  CAS  Google Scholar 

  14. C. Y. Regalado Vera, H. Ding, D. Peterson, et al., J. Phys. Energy 3, 032019 (2021). https://doi.org/10.1088/2515-7655/ac12ab

    Article  CAS  Google Scholar 

  15. E. Fabbri, T. K. Oh, S. Licoccia, et al., J. Electrochem. Soc. 156, 38 (2009). https://doi.org/10.1149/1.3005781

    Article  CAS  Google Scholar 

  16. C. Zhang, S. Li, X. Liu, et al., Int. J. Hydrogen Energy 38, 12921 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.069

    Article  CAS  Google Scholar 

  17. J. S. Fish, S. Ricote, R. O’Hayre, et al., J. Mater. Chem. A 3, 5392 (2015). https://doi.org/10.1039/c5ta00450k

    Article  CAS  Google Scholar 

  18. G. Taglieri, M. Tersigni, P. Villa, et al., Int. J. Inorg. Mater. 1, 103 (1999). https://doi.org/10.1016/S1463-0176(99)00016-2

    Article  CAS  Google Scholar 

  19. A. D’Epifanio, E. Fabbri, E. Di Bartolomeo, et al., ECS Trans. 7, 2337 (2019). https://doi.org/10.1149/1.2729353

    Article  Google Scholar 

  20. B. Meng, Rare Met., 25, 79 (2006). https://doi.org/10.1016/S1001-0521(06)60019-3

    Article  CAS  Google Scholar 

  21. F. Iguchi, T. Tsurui, N. Sata, et al., Solid State Ionics 180, 563 (2009). https://doi.org/10.1016/j.ssi.2008.12.006

    Article  CAS  Google Scholar 

  22. M. Fallah Vostakola and B. Amini Horri, Energies 14, 1280 (2021). https://doi.org/10.3390/en14051280

    Article  CAS  Google Scholar 

  23. N. Droushiotis, F. D. Grande, M. H. Dzarfan Othman, et al., Fuel Cells 14, 200 (2014). https://doi.org/10.1002/fuce.201300024

    Article  CAS  Google Scholar 

  24. J. Engels, D. Griesche, R. Waser, et al., Thin Solid Films 636, 446 (2017). https://doi.org/10.1016/j.tsf.2017.06.038

    Article  CAS  Google Scholar 

  25. J. M. Serra and W. A. Meulenberg, J. Am. Ceram. Soc. 90, 2082 (2007). https://doi.org/10.1111/j.1551-2916.2007.01677.x

    Article  CAS  Google Scholar 

  26. C.-C. Lo and T.-E. Hsieh, Ceram. Int. 38, 3977 (2012). https://doi.org/10.1016/j.ceramint.2012.01.052

    Article  CAS  Google Scholar 

  27. S. Duval, P. Holtappels, U. Vogt, et al., Solid State Ionics 178, 1437 (2007). https://doi.org/10.1016/j.ssi.2007.08.006

    Article  CAS  Google Scholar 

  28. M. T. Caldes, K. V. Kravchyk, M. Benamira, et al., ECS Trans. 45, 143 (2012). https://doi.org/10.1149/1.3701303

    Article  CAS  Google Scholar 

  29. M. Amsif, D. Marrero-López, A. Magrasó, et al., J. Eur. Ceram. Soc. 29, 131 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.06.001

    Article  CAS  Google Scholar 

  30. A. Jarry, E. Quarez, and O. Joubert, Solid State Ionics 256, 76 (2014). https://doi.org/10.1016/j.ssi.2013.12.012

    Article  CAS  Google Scholar 

  31. A. Jarry, G. S. Jackson, E. J. Crumlin, et al., Phys. Chem. Chem. Phys. 22, 136 (2020). https://doi.org/10.1039/C9CP04335G

    Article  CAS  Google Scholar 

  32. J. Li, C. Wang, X. Wang, et al., Electrochem. Commun. 112, 106672 (2020). https://doi.org/10.1016/j.elecom.2020.106672

    Article  CAS  Google Scholar 

  33. D. A. Medvedev, A. A. Murashkina, and A. K. Demin, Rev. J. Chem. 5, 193 (2015). https://doi.org/10.1134/S2079978015030024

    Article  CAS  Google Scholar 

  34. E. Fabbri, A. Magrasó, and D. Pergolesi, MRS Bull. 39, 792 (2014). https://doi.org/10.1557/mrs.2014.191

    Article  CAS  Google Scholar 

  35. A.-M. Azad and S. Subramaniam, Mater. Res. Bull. 37, 85 (2002). https://doi.org/10.1016/S0025-5408(01)00801-7

    Article  CAS  Google Scholar 

  36. S. B. C. Duval, P. Holtappels, U. Stimming, et al., Solid State Ionics 179, 1112 (2008). https://doi.org/10.1016/j.ssi.2007.11.030

    Article  CAS  Google Scholar 

  37. P. Babilo and S. M. Haile, J. Am. Ceram. Soc. 88, 2362 (2005). https://doi.org/10.1111/j.1551-2916.2005.00449.x

    Article  CAS  Google Scholar 

  38. M. P. Pechini, US Patent 3,330,697 (1967).

  39. D. Sari, Z. C. Torunoglu, Y. E. Kalay, et al., Ceram. Int. 43, 15185 (2017). https://doi.org/10.1016/j.ceramint.2017.08.050

    Article  CAS  Google Scholar 

  40. ASTM International, Astm B962-13 (2013)

  41. F. Pişkin, H. Akyıldız, and T. Öztürk, Int. J. Hydrogen Energy 40, 7553 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.049

    Article  CAS  Google Scholar 

  42. F. Pişkin and T. Öztürk, J. Memb. Sci. 524, 631 (2017). https://doi.org/10.1016/j.memsci.2016.11.066

    Article  CAS  Google Scholar 

  43. F. Pişkin and T. Öztürk, J. Alloys Compd. 775, 411 (2019). https://doi.org/10.1016/j.jallcom.2018.10.126

    Article  CAS  Google Scholar 

  44. D. Sarı, F. Pişkin, Z. C. Torunoğlu, et al., Solid State Ionics 326, 124 (2018). https://doi.org/10.1016/j.ssi.2018.10.003

    Article  CAS  Google Scholar 

  45. D. Sarı, B. Yaşar, F. Pişkin, et al., J. Electrochem. Soc. 166, F1157 (2019). https://doi.org/10.1149/2.0201915jes

    Article  CAS  Google Scholar 

  46. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  47. L. Lutterotti, D. Chateigner, S. Ferrari, et al., Thin Solid Films 450, 34 (2004). https://doi.org/10.1016/j.tsf.2003.10.150

    Article  CAS  Google Scholar 

  48. G. Ischia, H.-R. Wenk, L. Lutterotti, et al., J. Appl. Crystallogr. 38, 377 (2005). https://doi.org/10.1107/S0021889805006059

    Article  CAS  Google Scholar 

  49. N. ‘Adni Ibarahim, M. A. M. Ishak, A. Ramli, et al., Int. J. Ind. Chem. 5, 18 (2014). https://doi.org/10.1007/s40090-014-0018-4

  50. Z. Ning, Z. Da-Ming, and Z. Gong, Mater. Sci. Eng. B 166 34 (2010). https://doi.org/10.1007/s40090-014-0018-4

Download references

Funding

This work was funded by TUBITAK under project number 119M065, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Pişkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pişkin, F. Fabrication of BaZr0.80Y0.20O3 – δ Sputtering Target for Thin-Film Proton Conducting Oxides. Russ. J. Inorg. Chem. 67, 1239–1247 (2022). https://doi.org/10.1134/S0036023622080216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622080216

Keywords:

Navigation