Skip to main content
Log in

Radiation-Chemical Transformations of 7-NH3-4-CH3-Coumarin Decahydro-closo-Decaborate as a Potential Inhibitor of Free Radicals

  • MODERN PROBLEMS OF COORDINATION CHEMISTRY
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Compound (7-NH3-L)2[B10H10] has been prepared and identified by elemental analysis and IR and UV spectroscopies. This compound as a potential inhibitor of free radicals and contains a representative of coumarins possessing biological activity and a representative of boron cluster anions widely used in various fields of science and technology. The radiation-chemical transformations of 7-amino-4-methylcoumarin in CH3CN, 96% C2H5OH, in the CH3CN/CF3COOH system, and in 20% aqueous solution (H3O)2[B10H10] have been first studied by UV spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. Jamal and J. R. Casley-Smith, Ann. Trop. Med. Parasitol. 83, 287 (1989). https://doi.org/10.1080/00034983.1989.11812346

    Article  CAS  PubMed  Google Scholar 

  2. M. E. Marshal, J. L. Mochler, K. Edmonds, et al., Cancer. Res. Clin. Oncol. 120, 39 (1994). https://doi.org/10.1007/BF01377124

    Article  Google Scholar 

  3. E. Perez-Rodriguez, J. Aguilera, and F. L. Figueroa, J. Exp. Bot. 54, 1093 (2003). https://doi.org/10.1093/jxb/erg111

    Article  CAS  PubMed  Google Scholar 

  4. R. H. Goodwin and C. Taves, Am. J. Bot. 37, 224 (1950). https://doi.org/10.1002/j.1537-2197.1950.tb12186.x

  5. I. Korotkova, Y. A. Karbainov, and O. A. Avramchik, Anal. Bioanal. Chem. 327, 465 (2003). https://doi.org/10.1007/s00216-002-1687-y

    Article  CAS  Google Scholar 

  6. B. B. Guilherme, da R. V. Damiana, M.-R. Alexander, et al., Mini-Rev. Med. Chem. 13, 318 (2013). https://doi.org/10.2174/138955713804999775

    Article  Google Scholar 

  7. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine (University press, Oxford, 2007).

    Google Scholar 

  8. Y. Al-Majedy, A. Al-Amiery, A. A. Kadhum, A. BakarMohamad, Sys. Rev. Pharm. 8, 24 (2017). https://doi.org/10.5530/srp.2017.1.6

    Article  CAS  Google Scholar 

  9. Y. Xue, Y. Liu, Q. Luo, et al., 122, 8520 (2018). https://doi.org/10.1021/acs.jpca.8b06787

  10. S. N. Samovich, S. D. Brinkevich, and O. I. Shadyro, Rad. Phys. Chem. 100, 13 (2014). https://doi.org/10.1016/j.radphyschem.2014.03.015

    Article  CAS  Google Scholar 

  11. I. G. Antropova, A. A. Fenin, and A. A. Revina, High Energy Chemistry 41, 61 (2007). https://doi.org/10.1134/S0018143907020026

  12. D. R. Vianna, B. Guilherme, G. Meirelles, et al., Int. J. Mol. Sci. 13, 7260 (2012). https://doi.org/10.3390/ijms13067260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. A. Gromak, F. A. Kolokolov, V. V. Dotsenko, et al., Russ. J. Gen. Chem. 91, 685 (2021). https://doi.org/10.1134/S1070363221040174

    Article  CAS  Google Scholar 

  14. D. Ashok, K. Ramakrishna, N. Nagaraju, et al., Russ. J. Gen. Chem. 91, 711 (2021). https://doi.org/10.1134/S1070363221040216

    Article  CAS  Google Scholar 

  15. T. M. Valova, O. V. Venidiktova, and V. A. Barachevsky, et al., Russ. J. Gen. Chem. 91, 2647 (2021). https://doi.org/10.1134/S1070363221120379

    Article  CAS  Google Scholar 

  16. I. B. Sivaev, Chem. Heterocycl. Comp. 53, 638 (2017). https://doi.org/10.1007/s10593-017-2106-9

    Article  CAS  Google Scholar 

  17. W. H. Knoth, Patent USA 3354121.

  18. V. K. Skachkova, A. V. Grachev, L. V. Goeva, et al., Patent RF 2550156 C1.

  19. L. N. Goswami, L. Ma, S. Chakravarty, et al., Inorg. Chem. 52, 1694 (2013). https://doi.org/10.1021/ic3017613

  20. J. Plesek, Chem. Rev. 92, 269 (1992). https://doi.org/10.1021/ic3017613

  21. I. B. Sivaev, V. I. Bregadze, and N. T. Kuznetsov, Russ. Chem. Bull. 51, 1362 (2002). https://doi.org/10.1023/A:1020942418765

    Article  CAS  Google Scholar 

  22. I. B. Sivaev and V. I. Bregadze, Eur. J. Inorg. Chem. 11, 1433 (2009). https://doi.org/10.1002/ejic.200900003

    Article  CAS  Google Scholar 

  23. F. Teixidor, C. Viñas, A. Demonceau, and R. Núñez, Pure Appl. Chem. 75, 1305 (2003). https://doi.org/10.1351/pac200375091305

    Article  CAS  Google Scholar 

  24. R. B. King, Chem. Rev. 101, 1119 (2001). https://doi.org/10.1021/cr000442t

    Article  CAS  PubMed  Google Scholar 

  25. Z. Chen and R. B. King, Chem. Rev. 105, 3613 (2005). https://doi.org/10.1021/cr0300892

    Article  CAS  PubMed  Google Scholar 

  26. K. Yu. Zhizhin, A. P. Zhdanov, and N. T. Kuznetsov, Russ. J. Inorg. Chem. 55, 2089 (2010). https://doi.org/10.1134/S0036023610140019

    Article  CAS  Google Scholar 

  27. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Coll. Czech. Chem. Commun. 75, 1149 (2010). https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  28. I. B. Sivaev, Russ. J. Inorg. Chem. 64, 955 (2019). https://doi.org/10.1134/S003602361908014X

    Article  CAS  Google Scholar 

  29. I. N. Klyukin, N. A. Selivanov, A. Y. Bykov, et al., Russ. J. Inorg. Chem. 65, 1547 (2020). https://doi.org/10.1134/S0036023620100113

    Article  CAS  Google Scholar 

  30. A. V. Nelyubin, I. N. Klyukin, A. P. Zhdanov, et al., Russ. J. Inorg. Chem. 66, 139 (2021). https://doi.org/10.1134/S0036023621020133

    Article  CAS  Google Scholar 

  31. E. Y. Matveev, I. V. Novikov, A. S. Kubasov, et al., Russ. J. Inorg. Chem. 66, 187 (2021). https://doi.org/10.1134/S0036023621020121

    Article  CAS  Google Scholar 

  32. E. A. Malinina, S. E. Korolenko, A. P. Zhdanov, et al., J. Cluster Sci. 32, 755 (2021). https://doi.org/10.1007/s10876-020-01840-5

    Article  CAS  Google Scholar 

  33. K. Fink and M. Uchman, Coord. Chem. Rev. 431, 213684 (2021). https://doi.org/10.1016/j.ccr.2020.213684

    Article  CAS  Google Scholar 

  34. V. V. Avdeeva, T. M. Garaev, E. A. Malinina, et al., Russ. J. Inorg. Chem. 67, 28 (2022). https://doi.org/10.1134/S0036023622010028

    Article  CAS  Google Scholar 

  35. E. Justus, D. T. Izteleuova, A. V. Kasantsev, et al., Collect. Czech. Chem. Commun. 72, 1740 (2007). https://doi.org/10.1135/cccc20071740

    Article  CAS  Google Scholar 

  36. I. Kosenko, J. Laskova, A. Kozlova, et al., J. Organomet. Chem. 921, 121379 (2020). https://doi.org/10.1016/j.jorganchem.2020.121370

    Article  CAS  Google Scholar 

  37. A. Serdyukov, I. Kosenko, A. Druzina, et al., J. Organomet. Chem. 946947, 121905 (2021). https://doi.org/10.1016/j.jorganchem.2021.121905

    Article  CAS  Google Scholar 

  38. H. C. Miller, N. E. Miller, and E. L. Muetterties, J. Am. Chem. Soc. 85, 3885 (1963). https://doi.org/10.1021/ja00906a033

    Article  CAS  Google Scholar 

  39. E. A. Makhneva, A. V. Lipeeva, and E. E. Shul’ts, Russ. J. Org. Chem. 50, 662 (2014). https://doi.org/10.1134/S107042801405008X

    Article  CAS  Google Scholar 

  40. D. J. Fuller, D. L. Kepert, B. W. Skelton, and A. H. White, Aust. J. Chem. 40, 2097 (1987). https://doi.org/10.1071/CH9872097

    Article  CAS  Google Scholar 

  41. C. T. Chantler and E. N. Maslen, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 45, 290 (1989). https://doi.org/10.1107/S0108768189001138

    Article  Google Scholar 

  42. V. V. Avdeeva, A. V. Vologzhanina, E. A. Malinina, and N. T. Kuznetsov, Crystals 9, 330 (2019). https://doi.org/10.3390/cryst9070330

    Article  CAS  Google Scholar 

  43. S. E. Korolenko, A. S. Kubasov, L. V. Goeva, et al., Inorg. Chim. Acta 527, 120587 (2021). https://doi.org/10.1016/j.ica.2021.120587

    Article  CAS  Google Scholar 

  44. E. A. Malinina, S. E. Korolenko, A. S. Kubasov, et al., J. Solid State Chem. 302, 122413 (2021). https://doi.org/10.1016/j.jssc.2021.122413

    Article  CAS  Google Scholar 

  45. H. D. Burrows and E. M. Kosower, J. Phys. Chem. 78, 112 (1974). https://doi.org/10.1021/j100595a006

    Article  CAS  Google Scholar 

  46. A. K. Pikayev, Modern Radiation Chemistry. Radiolysis of Gases and Liquids (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  47. S. Lukáč, J. Teplý, and K. Vacek, J. Chem. Soc. Faraday Trans. 68, 1377 (1972). https://doi.org/10.1039/F19726801377

    Article  Google Scholar 

  48. S. J. Newton, J. Chem. Phys. 26, 1764 (1957). https://doi.org/10.1063/1.1743630

    Article  CAS  Google Scholar 

  49. J. N. Baxter and F. J. Johnston, Radiat. Res. 33, 311 (1968). https://doi.org/10.2307/3572482

    Article  CAS  PubMed  Google Scholar 

  50. M. Ntumann-Spallert and N. Getoff, Radiat. Phys. Chem. 13, 101 (1977). https://doi.org/10.1016/0146-5724(79)90056-6

    Article  Google Scholar 

  51. G. R. Freeman, Radiation Chemistry of Ethanol: A Review of Data on Yields, Reaction Rate Parameters, and Spectral Properties of Transients (NBS, Washington, 1974).

    Book  Google Scholar 

  52. I. P. Bell, M. A. J. Roders, H. D. J. Burrows, J. Chem. Soc., Faraday Trans. 73, 315 (1977). https://doi.org/10.1039/F19777300315

    Article  CAS  Google Scholar 

  53. W. A. Mulac, A. Bromberg, and D. Meisel, Radiat. Phys. Chem. 26, 205 (1985). https://doi.org/10.1016/0146-5724(85)90187-6

    Article  CAS  Google Scholar 

  54. T. H. Tran-Thi, A. M. Koulkes-Pujo, and L. Gilles, Radiat. Phys. Chem. 15, 209 (1980). https://doi.org/10.1016/0146-5724(80)90133-8

    Article  CAS  Google Scholar 

  55. E. A. Malinina, V. V. Avdeeva, L. V. Goeva, et al., Russ. J. Inorg. Chem. 56, 687 (2011). https://doi.org/10.1134/S0036023611050160

    Article  CAS  Google Scholar 

  56. G. Shoha, D. Schomburg, and W. N. Lipscomb, Cryst. Struct. Comm. 9, 429 (1980).

    Google Scholar 

  57. I. N. Polyakova, E. A. Malinina, V. V. Drozdova, et al., Crystallogr. Rep. 54, 831 (2009). https://doi.org/10.1134/S1063774509050149

    Article  CAS  Google Scholar 

Download references

Funding

The study was performed within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental research. The authors thank the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Avdeeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

The article is based on the abstracts of the XXVIII International Chugaev Conference on Coordination Chemistry, Tuapse, Russia, October 3–8, 2021.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goeva, L.V., Zhuchkova, A.F., Malinina, E.A. et al. Radiation-Chemical Transformations of 7-NH3-4-CH3-Coumarin Decahydro-closo-Decaborate as a Potential Inhibitor of Free Radicals. Russ. J. Inorg. Chem. 67, 1144–1150 (2022). https://doi.org/10.1134/S0036023622080149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622080149

Keywords:

Navigation