Skip to main content

Advertisement

Log in

Biogeochemical constraints on climate change mitigation through regenerative farming

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

This review suggests that most of the management practices associated with regenerative agriculture are not likely to lead to a large net sequestration of organic carbon in soils. Some improved management practices, such as increased fertilizer use, manuring, and applications of biochar, are constrained by biogeochemical stoichiometry and the availability of organic inputs. Other management practices, such as fertilizer applications, irrigation, and applications of ground silicate minerals, entail ancillary and off-site emissions of carbon dioxide that reduce the net sequestration of carbon in soils. Carbon sequestration in agricultural soils, even with best management practices, is only likely to offer a small net storage of carbon that can be marketed as a credit to emissions from other sectors of the economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data are gleaned from cited references herein.

References

  • Abdalla M, Hastings A, Chang K et al (2019) A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob Chang Biol 25:2530–2543

    Article  Google Scholar 

  • Anderson-Teixeira KJ, Masters MD, Black CK (2013) Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems. https://doi.org/10.1007/s10021-012-9628-x

    Article  Google Scholar 

  • Angers DA, Bolinder MA, Carter MR et al (1997) Impact of tillage practices on organic carbon and nitrogen storage in cool, humid soils of eastern Canada. Soil Till Res 41:191–201

    Article  Google Scholar 

  • Beerling DJ, Kantzas EP, Lomas MR et al (2020) Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature 585:242–248

    Article  Google Scholar 

  • Bellamy PH, Loveland PJ, Bradley RI et al (2005) Carbon losses from all soils across England and Wales 1978–2003. Nature 437:245–248

    Article  Google Scholar 

  • Bruni E, Guenet B, Huang Y et al (2021) Additional carbon inputs to reach a 4 per 1000 objective in Europe: feasibility and projected impacts of climate change based on Century simulations of long-term arable experiments. Biogeosciences 18:3981–4004

    Article  Google Scholar 

  • Charmley E, Williams SRO, Moate PJ et al (2016) A universal equation to predict methane production of forage-fed cattle in Australia. Anim Prod Sci 56:169–180

    Article  Google Scholar 

  • Crippa M, Solazzo E, Guizzardi D et al (2021) Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food 2:198–209

    Article  Google Scholar 

  • Cusack DF, Kazanski CE, Hedgpeth A et al (2021) Reducing climate impacts of beef production: A synthesis of life cycle assessments across management systems and global regions. Glob Chang Biol 27:1721–1736

    Article  Google Scholar 

  • Emde D, Hannamllka K, Nelson ML, Jones M (2021) Soil organic carbon in irrigated agricultural systems: a meta-analysis. Glob Chang Biol. https://doi.org/10.1111/gcb.15680

    Article  Google Scholar 

  • Entry JA, Sojka RE, Shewmaker GE (2004) Irrigation increases inorganic carbon in agricultural soils. Environ Manag 33:S309–S317

    Article  Google Scholar 

  • Frye WW (1984) Energy requirement in no-tillage. In: Phillips RE, Phillips SH (eds) No-Tillage agriculture: principles and practices. Van Nostrand Reinhold, New York, pp 127–151

    Chapter  Google Scholar 

  • Gaunt JL, Lehmann J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  Google Scholar 

  • Gautam S, Mishra U, Scown CD et al (2022) Continental United States may lose 1.8 pentagrams of soil organic carbon under climate change by 2100. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.13489

    Article  Google Scholar 

  • Griscom B et al (2017) Natural climate solutions. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1710465114

    Article  Google Scholar 

  • Gross A, Bromm T, Glaser B (2021) Soil organic carbon sequestration after biochar application: a global meta-analysis. Agronomy. https://doi.org/10.3390/agronomy11122474

    Article  Google Scholar 

  • Guenet B, Gabrielle B et al (2021) Can N2O emissions offset the benefits from soil organic carbon storage? Glob Chang Biol 27(2):237–256

    Article  Google Scholar 

  • Heikkinen J, Ketoja E, Nuutinen V, Regina K (2013) Declining trend of carbon in Finnish cropland soils in 1974–2009. Glob Chang Biol 19:1456–1469

    Article  Google Scholar 

  • Heikkinen J, Keskinen R, Kostensalo J, Nuutinen V (2022) Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob Chang Biol. https://doi.org/10.1111/gcb.16164

    Article  Google Scholar 

  • Ismail I, Blevins RL, Frye WW (1994) Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci Soc Am J 58:193–198

    Article  Google Scholar 

  • Janzen HH, Groenigen KJ, Powlson DS, Schwinghamer T, Groenigen JW (2022) Photosynthetic limits on carbon sequestration in croplands. Geoderma. https://doi.org/10.1016/j.geoderma.2022.115810

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relationship to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Karstens K, Bodirsky BL, Dietrich JP et al (2021) Management induced changes of soil organic carbon on global croplands. Biogeosciences. https://doi.org/10.5194/bg-2020-468

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57:200–210

    Article  Google Scholar 

  • Kopittke PM, Dalal RC, Finn D, Menzies NW (2017) Global changes in soil stocks of carbon, nitrogen, phosphorus and sulfur as influenced by long-term agricultural production. Glob Chang Biol 23:2509–2519

    Article  Google Scholar 

  • Lal R, Smith P et al (2018) The carbon sequestration potential of terrestrial ecosystems. J Soil Water Conserv 73:145–152

    Article  Google Scholar 

  • Launay C, Constantin J, Chlebowski E et al (2021) Estimating the carbon storage potential and greenhouse gas emissions of French arable cropland using high-resolution modeling. Glob Chang Biol. https://doi.org/10.1111/gcb.15512

    Article  Google Scholar 

  • Lehmann J, Cowie A, Masiello CA et al (2021) Biochar in climate change mitigation. Nat Geosci 14:883–892

    Article  Google Scholar 

  • Lessmann M, Ros GH, Young MD, W.de Vries. (2021) Global variation in soil carbon sequestration potential through improved cropland management. Glob Chang Biol 28:1162–1177

    Article  Google Scholar 

  • Li B, Song H, Cao W et al (2021) Response of soil organic carbon stock to animal manure application: a new global synthesis integrating the impacts of agricultural management and environmental conditions. Glob Chang Biol 29:5356–5367

    Article  Google Scholar 

  • Li C, Bai X, Tan Q, Luo G, Wu L, Chen F, Xi H, Luo X, Ran C, Chen H, Zhang S, Liu M, Gong S, Xiong L, Song F, Xiao B, Du C (2022) High-resolution mapping of the global silicate weathering carbon sink and its long-term changes. Glob Chang Biol. https://doi.org/10.1111/gcb.16186

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB (2006) Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  Google Scholar 

  • Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF (2021) Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat Geosci 14:295–300

    Article  Google Scholar 

  • Maddigan RJ, Chern WS, Rizy CG (1982) The irrigation demand for electricity. Am J Agr Econ 64:673–680

    Article  Google Scholar 

  • Maillard E, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol 20:666–679

    Article  Google Scholar 

  • Martin MP, Dimassi B, Dobarco MR et al (2021) Feasibility of the 4 per 1000 aspirational target for soil carbon: a case study for France. Glob Change Biol. https://doi.org/10.1111/gcb.15547

    Article  Google Scholar 

  • McClelland SC, Paustian K, Schipanski ME (2021) Management of cover crops in temperate climates influences soil organic carbon stocks: a meta-analysis. Ecol Appl 31:e02278

    Article  Google Scholar 

  • Melillo J, Frey SD, DeAngelis KM et al (2017) Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358:101–105

    Article  Google Scholar 

  • Morris AC (1998) Energy use, greenhouse gas emissions, and crop production: Effect of soil management practices. Ph.D. Dissertation, Rice University, Houston, Texas

  • Mosier AR, Halvorson AD, Peterson GA et al (2005) Measurement of net global warming potential in three agroecosystems. Nutr Cycl Agroecosyst 72:67–76

    Article  Google Scholar 

  • Nicoloso RS, Rice CW (2021) Intensification of no-till agricultural systems: an opportunity for carbon sequestration. Soil Sci Soc Am J 85:1395–1409

    Article  Google Scholar 

  • Olson KR, Al-Kaisi MM, Lal R, Lowrey B (2014) Experimental considerations, treatments, and methods in determining soil organic carbon sequestration rates. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj2013.09.0412

    Article  Google Scholar 

  • Peralta AL, Wander MM (2008) Soil organic matter under soybean exposed to elevated CO2. Plant Soil 303:69–81

    Article  Google Scholar 

  • Poffenbarger HJ, Barker DW, Helmers MJ, Miguez FE, Olk DC, Sawyer JE, Six J, Castellano MJ (2017) Maximum soil organic carbon storage in Midwest US cropping systems when crops are optimally nitrogen-fertilized. PLoS ONE 12:e0172293

    Article  Google Scholar 

  • Post WM, Pastor J, Zinke PJ, Stangenberger AG (1985) Global patterns of soil nitrogen storage. Nature 317:613–616

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Powlson DS, Stirling CM, Jat ML et al (2014) Limited potential of no-till agriculture for climate change mitigations. Nat Clim Chang 4:678–683

    Article  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    Article  Google Scholar 

  • Reinhart KO, Worogo HS, Rinella MJ (2021) Ruminating on the science of carbon ranching. J Appl Ecol. https://doi.org/10.1111/1365-2664.14100

    Article  Google Scholar 

  • Rocci KS, Lavallee JM, Stewart CE, Cotrufo MF (2021) Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: a meta-analysis. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.148569

    Article  Google Scholar 

  • Rui Y, Jackson RD, Cotrufo MF et al (2022) Persistent soil carbon enhanced in Mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2118931119

    Article  Google Scholar 

  • Russell AE, Cambardella CA, Laird DA et al (2009) Nitrogen fertilizer effects on soil carbon balances in Midwestern US agricultural systems. Ecol Appl 19:1102–1113

    Article  Google Scholar 

  • Rustad L, Campbell J, Marion G et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Sanderman J, Hengel T, Fiske GJ (2017) Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci USA 114:9575–9580

    Article  Google Scholar 

  • Sanford GR, Posner JL, Jackson RD et al (2012) Soil carbon lost from Mollisols of the North Central USA with 20 years of agricultural best management practices. Agric Ecosyst Environ 162:68–78

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–593

    Article  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  Google Scholar 

  • Schlesinger WH (1986) Changes in soil carbon storage and associated properties with disturbance and recovery. In: Trabalka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, pp 194–220

    Chapter  Google Scholar 

  • Schlesinger WH (2000) Carbon sequestration in soils: Some cautions amidst optimism. Agric Ecosyst Environ 82:121–127

    Article  Google Scholar 

  • Schlesinger WH, Amundson R (2018) Managing for soil carbon sequestration: let’s get realistic. Glob Chang Biol. https://doi.org/10.1111/gcb.14478

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci Soc Am J 63:1350–1358

    Article  Google Scholar 

  • Spohn M (2020) Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob Chang Biol 26:4169–4177

    Article  Google Scholar 

  • Taylor LL, Driscoll CT, Groffman PM et al (2021) Increased carbon capture by a silicate-treated forested watershed affected by acid deposition. Biogeosciences. https://doi.org/10.5194/bg-2020-288

    Article  Google Scholar 

  • Terrer C, Phillips RP, Hungate BA et al (2021) A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:599–603

    Article  Google Scholar 

  • Torbert HA, Rogers HH, Prior SA et al (1997) Effects of elevated CO2 in agro-ecosystems on soil carbon storage. Glob Chang Biol 3:513–521

    Article  Google Scholar 

  • van Van Groenigen C, Kessel BAH, Oenema O, Powlson DS, van Groenigen KJ (2017) Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol 51:4738–4739

    Article  Google Scholar 

  • Varvel GE (1994) Rotation and nitrogen fertilization effects on soil carbon and nitrogen. Agron J 86:319–325

    Article  Google Scholar 

  • West TO, Marland G (2002) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture. Agric Ecosyst Environ 91:217–232

    Article  Google Scholar 

  • West TO, Brandt CC, Baskaran LM et al (2010) Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol Appl 20:1074–1086

    Article  Google Scholar 

  • Wolf J, West TO, LePage Y et al (2015) Biogenic carbon fluxes from global agricultural production and consumption: global agricultural carbon fluxes. Global Biogeochem Cycles 29:1617–1639

    Article  Google Scholar 

  • Xiao L, Kuhn NJ, Zhao R, Cao L (2021) Net effects of conservation agriculture principles on sustainable land use: a synthesis. Glob Chang Biol 27:6321–6330

    Article  Google Scholar 

  • Xu C, Xu X, Ju C et al (2021) Long-term, amplified response of soil organic carbon to nitrogen addition worldwide. Glob Chang Biol. https://doi.org/10.1111/gcb.15489

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Single author.

Corresponding author

Correspondence to William H. Schlesinger.

Ethics declarations

Competing interests

None.

Additional information

Responsible Editor: Kate Lajtha

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlesinger, W.H. Biogeochemical constraints on climate change mitigation through regenerative farming. Biogeochemistry 161, 9–17 (2022). https://doi.org/10.1007/s10533-022-00942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-022-00942-8

Keywords

Navigation