Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping

Abstract

High-resolution optical imaging deep in tissues is challenging because of optical aberrations and scattering of light caused by the complex structure of living matter. Here we present an adaptive optics three-photon microscope based on analog lock-in phase detection for focus sensing and shaping (ALPHA-FSS). ALPHA-FSS accurately measures and effectively compensates for both aberrations and scattering induced by specimens and recovers subcellular resolution at depth. A conjugate adaptive optics configuration with remote focusing enables in vivo imaging of fine neuronal structures in the mouse cortex through the intact skull up to a depth of 750 µm below the pia, enabling near-non-invasive high-resolution microscopy in cortex. Functional calcium imaging with high sensitivity and high-precision laser-mediated microsurgery through the intact skull were also demonstrated. Moreover, we achieved in vivo high-resolution imaging of the deep cortex and subcortical hippocampus up to 1.1 mm below the pia within the intact brain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conjugate α-FSS–3PM system and correction of aberrations induced by a 100-µm-thick intact mouse skull.
Fig. 2: Conjugate α-FSS–3PM enables in vivo cortical imaging with high resolution over large volumes through the intact skull.
Fig. 3: Conjugate α-FSS–3PM improves in vivo functional calcium imaging of neuronal activity through the intact skull.
Fig. 4: Conjugate α-FSS–3PM enables precise laser micro-lesion and in vivo high-resolution imaging of microglia in aged AD brain through the intact skull.
Fig. 5: Pupil α-FSS–3PM enables in vivo imaging of deep-cortical and hippocampal neurons at synaptic resolution through an open skull window.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the paper, its extended data and Supplementary Information files. The source data files for all data presented within the figures can be found at https://github.com/QuLabHKUST/QuLabAO.

Code availability

The custom codes for image processing are available online at https://github.com/QuLabHKUST/QuLabAO.

References

  1. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Theer, P. & Denk, W. T. On the fundamental imaging-depth limit in two-photon microscopy. Proc. SPIE 5463, Femtosecond Laser Applications in Biology. https://doi.org/10.1117/12.548057 (2004).

  3. Horton, N. G. et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7, 205–209 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  4. Ouzounov, D. G. et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14, 388–390 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kubby, J. A. Adaptive Optics for Biological Imaging (CRC Press, 2013).

  6. Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014).

    Article  Google Scholar 

  7. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625–628 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

  10. Liu, R., Li, Z., Marvin, J. S. & Kleinfeld, D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat. Methods 16, 615–618 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Débarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique. Proc. Natl Acad. Sci. USA 109, 8434–8439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, C. et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat. Methods 11, 1037–1040 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papadopoulos, I. N., Jouhanneau, J.-S., Poulet, J. F. A. & Judkewitz, B. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics 11, 116–123 (2017).

    Article  Google Scholar 

  16. Papadopoulos, I. N. et al. Dynamic conjugate F-SHARP microscopy. Light Sci. Appl. 9, 110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu, H.-T., Pan, F., Yang, G. & Gan, W.-B. Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat. Neurosci. 10, 549–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Nimmerjahn, A. Optical window preparation for two-photon imaging of microglia in mice. Cold Spring Harb. Protoc. 2012, pdb.prot069286 (2012).

    Article  PubMed  Google Scholar 

  20. Park, J.-H., Sun, W. & Cui, M. High-resolution in vivo imaging of mouse brain through the intact skull. Proc. Natl Acad. Sci. USA 112, 9236–9241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tao, X. et al. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF). Opt. Express 25, 10368–10383 (2017).

    Article  PubMed  Google Scholar 

  22. Hontani, Y., Xia, F. & Xu, C. Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Sci. Adv. 7, eabf3531 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789–792 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Streich, L. et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nat. Methods 18, 1253–1258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rodríguez, C. et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat. Methods 18, 1259–1264 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Göbel, W. & Helmchen, F. In vivo calcium imaging of neural network function. Physiology Bethesda 22, 358–365 (2007).

    Article  PubMed  Google Scholar 

  27. Parkhurst, C. N. & Gan, W.-B. Microglia dynamics and function in the CNS. Curr. Opin. Neurobiol. 20, 595–600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Canty, A. J. et al. In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat. Commun. 4, 2038 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Nishimura, N. et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nat. Methods 3, 99–108 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Lau, S.-F. et al. IL-33-PU.1 transcriptome reprogramming drives functional state transition and clearance activity of microglia in Alzheimer’s disease. Cell Rep. 31, 107530 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, C. et al. High-resolution two-photon transcranial imaging of brain using direct wavefront sensing. Photonics Res. 9, 1144–1156 (2021).

    Article  Google Scholar 

  33. Chen, C. et al. In vivo near-infrared two-photon imaging of amyloid plaques in deep brain of Alzheimer’s disease mouse model. ACS Chem. Neurosci. 9, 3128–3136 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Holtmaat, A. et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4, 1128–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, T. H. et al. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell Rep. 17, 3385–3394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barretto, R. P. J., Messerschmidt, B. & Schnitzer, M. J. In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 6, 511–512 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin, Z. et al. Adaptive optics two-photon endomicroscopy enables deep-brain imaging at synaptic resolution over large volumes. Sci. Adv. 6, eabc6521 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 1433–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, T. & Xu, C. Three-photon neuronal imaging in deep mouse brain. Optica 7, 947–960 (2020).

    Article  Google Scholar 

  40. Liu, H. et al. In vivo deep-brain structural and hemodynamic multiphoton microscopy enabled by quantum dots. Nano Lett. 19, 5260–5265 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Akturk, S., Gu, X., Kimmel, M. & Trebino, R. Extremely simple single-prism ultrashort-pulse compressor. Opt. Express 14, 10101–10108 (2006).

    Article  Google Scholar 

  42. Park, J.-H., Kong, L., Zhou, Y. & Cui, M. Large-field-of-view imaging by multi-pupil adaptive optics. Nat. Methods 14, 581–583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Oppenheim, A. V., Willsky, A. S. & Nawab, S. H. Signals & Systems (Prentice-Hall International, 1997).

  45. Yang, Y., Chen, W., Fan, J. L. & Ji, N. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy. Biomed. Opt. Express 12, 354–366 (2021).

    Article  PubMed  Google Scholar 

  46. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang, G., Pan, F., Parkhurst, C. N., Grutzendler, J. & Gan, W.-B. Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat. Protoc. 5, 201–208 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun, Q. et al. In vivo imaging-guided microsurgery based on femtosecond laser produced new fluorescent compounds in biological tissues. Biomed. Opt. Express 9, 581–590 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council through grants 16103215, 16148816, 16102518, 16102920, T13-607/12R, T13-605/18W, C6002-17GF, C6001-19E and N_HKUST603/19 (to J.Y.Q.), the Innovation and Technology Commission (ITCPD/17-9 to N.Y.I.), the Area of Excellence Scheme of the University Grants Committee (AoE/M-604/16 to N.Y.I. and J.Y.Q.), the National Key R&D Program of China (2018YFE0203600 to N.Y.I.) and the Guangdong Provincial Fund for Basic and Applied Basic Research (2019B1515130004 to N.Y.I.). We thank J. He, M. M. Hossian and M. Chen from City University of Hong Kong for providing the CCK-GCaMP6s transgenic mice and preparing the open skull window.

Author information

Authors and Affiliations

Authors

Contributions

Z.Q. and J.Y.Q. conceived of the research idea. Z.Q. built the AO 3P imaging system and created the control software. Z.Q., Z.S. and C.C. designed and conducted the experiments and data analysis. Z.S. carried out the surgery, with the assistance of C.C., Z.Q., W.W. and J.L. N.Y.I. and J.Y.Q. supervised the project. C.C. and Z.Q. took the lead in writing the manuscript, with input from all other authors.

Corresponding author

Correspondence to Jianan Y. Qu.

Ethics declarations

Competing interests

Z.Q. and J.Y.Q. have submitted a patent application on part of the described work. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Xi Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figs. 1–23 and Supplementary Table 1

Reporting Summary

Supplementary Video 1

Video 1: Conjugate AO with remote focusing enables effective improvement of imaging resolution over large imaging depths ranged from 100 µm to 500 µm, with a single corrective wavefront at 300 µm

Supplementary Video 2

Video 2: Near-simultaneous multi-plane calcium imaging of neuronal and dendritic activities from different cortical layers through the intact skull

Supplementary Video 3

Video 3: Time-lapse imaging at multiple depths revealed that the highly-localized lesion activated only a few adjacent microglia (within a distance of 50 µm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., She, Z., Chen, C. et al. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping. Nat Biotechnol 40, 1663–1671 (2022). https://doi.org/10.1038/s41587-022-01343-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-022-01343-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing