Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Baryonic solutions and challenges for cosmological models of dwarf galaxies

Abstract

Galaxies and their dark-matter haloes have posed several challenges to the dark energy plus cold dark matter (ΛCDM) cosmological model. These discrepancies between observations and theory intensify for the lowest-mass (‘dwarf’) galaxies. ΛCDM predictions for the number, spatial distribution and internal structure of low-mass dark-matter haloes have historically been at odds with observed dwarf galaxies, but this is partially expected, because many predictions modelled only the dark-matter component. Any robust ΛCDM prediction must include, hand in hand, a model for galaxy formation to understand how baryonic matter populates and affects dark-matter haloes. In this Review, we consider the most notable challenges to ΛCDM regarding dwarf galaxies, and we discuss how recent cosmological numerical simulations have pinpointed baryonic solutions to these challenges. We identify remaining tensions, including the diversity of the inner dark-matter content, planes of satellites, stellar morphologies and star-formation quenching. Their resolution, or validation as actual problems with ΛCDM, will probably require both refining of galaxy-formation models and improving numerical accuracy in simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historical and current tensions between ΛCDM theory and observations of dwarf galaxies.
Fig. 2: Relation between galaxy stellar mass and dark-matter halo mass.
Fig. 3: The diversity of rotation curves is a persistent challenge to ΛCDM.
Fig. 4: Dwarf galaxies show a wide range of sizes at fixed stellar mass.
Fig. 5: Fraction of satellite dwarf galaxies that are quiescent versus stellar mass in observations and simulations of MW-mass galaxies.

Similar content being viewed by others

References

  1. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

  2. Rees, M. J. & Ostriker, J. P. Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977).

    Article  ADS  Google Scholar 

  3. White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article  ADS  Google Scholar 

  4. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).

    Article  ADS  Google Scholar 

  5. Vogelsberger, M., Marinacci, F., Torrey, P. & Puchwein, E. Cosmological simulations of galaxy formation. Nat. Rev. Phys. 2, 42–66 (2020).

    Article  Google Scholar 

  6. Benson, A. J. Galaxy formation theory. Phys. Rep. 495, 33–86 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  7. De Lucia, G. Lighting up dark matter haloes. Galaxies 7, 56 (2019).

    Article  ADS  Google Scholar 

  8. Conroy, C., Wechsler, R. H. & Kravtsov, A. V. Modeling luminosity-dependent galaxy clustering through cosmic time. Astrophys. J. 647, 201–214 (2006).

    Article  ADS  Google Scholar 

  9. Kravtsov, A. V. The size-virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).

    Article  ADS  Google Scholar 

  10. Moster, B. P., Naab, T. & White, S. D. M. EMERGE – an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    Article  ADS  Google Scholar 

  11. Somerville, R. S. et al. The relationship between galaxy and dark matter halo size from z ~ 3 to the present. Mon. Not. R. Astron. Soc. 473, 2714–2736 (2018).

    Article  ADS  Google Scholar 

  12. Behroozi, P., Wechsler, R. H., Hearin, A. P. & Conroy, C. UNIVERSEMACHINE: the correlation between galaxy growth and dark matter halo assembly from z = 0-10. Mon. Not. R. Astron. Soc. 488, 3143–3194 (2019).

    Article  ADS  Google Scholar 

  13. Nadler, E. O., Mao, Y.-Y., Green, G. M. & Wechsler, R. H. Modeling the connection between subhalos and satellites in Milky Way-like systems. Astrophys. J. 873, 34 (2019).

    Article  ADS  Google Scholar 

  14. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  15. Milgrom, M. MOND—theoretical aspects. New Astron. Rev. 46, 741–753 (2002).

    Article  ADS  Google Scholar 

  16. Maeder, A. & Gueorguiev, V. G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidals. Mon. Not. R. Astron. Soc. 492, 2698–2708 (2020).

    Article  ADS  Google Scholar 

  17. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39 (1986).

    Article  ADS  Google Scholar 

  18. Stinson, G. S., Dalcanton, J. J., Quinn, T., Kaufmann, T. & Wadsley, J. Breathing in low-mass galaxies: a study of episodic star formation. Astrophys. J. 667, 170–175 (2007).

    Article  ADS  Google Scholar 

  19. Sawala, T., Scannapieco, C., Maio, U. & White, S. Formation of isolated dwarf galaxies with feedback. Mon. Not. R. Astron. Soc. 402, 1599–1613 (2010).

    Article  ADS  Google Scholar 

  20. Governato, F. et al. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows. Nature 463, 203–206 (2010).

    Article  ADS  Google Scholar 

  21. Vogelsberger, M., Zavala, J., Simpson, C. & Jenkins, A. Dwarf galaxies in CDM and SIDM with baryons: observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 444, 3684–3698 (2014).

    Article  ADS  Google Scholar 

  22. González-Samaniego, A., Colín, P., Avila-Reese, V., Rodríguez-Puebla, A. & Valenzuela, O. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories. Astrophys. J. 785, 58 (2014).

    Article  ADS  Google Scholar 

  23. Hopkins, P. F. et al. How to model supernovae in simulations of star and galaxy formation. Mon. Not. R. Astron. Soc. 477, 1578–1603 (2018).

    Article  ADS  Google Scholar 

  24. Wang, L. et al. NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 454, 83–94 (2015).

    Article  ADS  Google Scholar 

  25. Hopkins, P. F. et al. Radiative stellar feedback in galaxy formation: methods and physics. Mon. Not. R. Astron. Soc. 491, 3702–3729 (2020).

    Article  ADS  Google Scholar 

  26. Bovill, M. S. & Ricotti, M. Pre-reionization fossils, ultra-faint dwarfs, and the missing galactic satellite problem. Astrophys. J. 693, 1859–1870 (2009).

    Article  ADS  Google Scholar 

  27. Bovill, M. S. & Ricotti, M. Where are the fossils of the first galaxies? II. True fossils, ghost halos, and the missing bright satellites. Astrophys. J. 741, 18 (2011).

    Article  ADS  Google Scholar 

  28. Brown, T. M. et al. The quenching of the ultra-faint dwarf galaxies in the reionization era. Astrophys. J. 796, 91 (2014).

    Article  ADS  Google Scholar 

  29. Fitts, A. et al. FIRE in the field: simulating the threshold of galaxy formation. Mon. Not. R. Astron. Soc. 471, 3547–3562 (2017).

    Article  ADS  Google Scholar 

  30. Revaz, Y. & Jablonka, P. Pushing back the limits: detailed properties of dwarf galaxies in a ΛCDM universe. Astron. Astrophys. 616, A96 (2018).

    Article  ADS  Google Scholar 

  31. Wheeler, C. et al. Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution. Mon. Not. R. Astron. Soc. 490, 4447–4463 (2019).

    Article  ADS  Google Scholar 

  32. Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004).

    Article  ADS  Google Scholar 

  33. Wetzel, A. R. & White, M. What determines satellite galaxy disruption? Mon. Not. R. Astron. Soc. 403, 1072–1088 (2010).

    Article  ADS  Google Scholar 

  34. Peñarrubia, J., Navarro, J. F. & McConnachie, A. W. The tidal evolution of local group dwarf spheroidals. Astrophys. J. 673, 226–240 (2008).

    Article  ADS  Google Scholar 

  35. Choi, J.-H., Weinberg, M. D. & Katz, N. The dynamics of satellite disruption in cold dark matter haloes. Mon. Not. R. Astron. Soc. 400, 1247–1263 (2009).

    Article  ADS  Google Scholar 

  36. Libeskind, N. I., Knebe, A., Hoffman, Y., Gottlöber, S. & Yepes, G. Disentangling the dark matter halo from the stellar halo. Mon. Not. R. Astron. Soc. 418, 336–345 (2011).

    Article  ADS  Google Scholar 

  37. Brooks, A. M., Kuhlen, M., Zolotov, A. & Hooper, D. A baryonic solution to the missing satellites problem. Astrophys. J. 765, 22 (2013).

    Article  ADS  Google Scholar 

  38. Errani, R., Penarrubia, J. & Tormen, G. Constraining the distribution of dark matter in dwarf spheroidal galaxies with stellar tidal streams. Mon. Not. R. Astron. Soc. 449, L46–L50 (2015).

    Article  ADS  Google Scholar 

  39. Smith, R. et al. The preferential tidal stripping of dark matter versus stars in galaxies. Astrophys. J. 833, 109 (2016).

    Article  ADS  Google Scholar 

  40. Sales, L. V., Navarro, J. F., Abadi, M. G. & Steinmetz, M. Satellites of simulated galaxies: survival, merging and their relationto the dark and stellar haloes. Mon. Not. R. Astron. Soc. 379, 1464–1474 (2007).

    Article  ADS  Google Scholar 

  41. Buck, T., Macciò, A. V., Dutton, A. A., Obreja, A. & Frings, J. NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies. Mon. Not. R. Astron. Soc. 483, 1314–1341 (2019).

    Article  ADS  Google Scholar 

  42. Mazzarini, M., Just, A., Macciò, A. V. & Moetazedian, R. Simulations of satellite tidal debris in the Milky Way halo. Astron. Astrophys. 636, A106 (2020).

    Article  ADS  Google Scholar 

  43. Brooks, A. M. & Zolotov, A. Why baryons matter: the kinematics of dwarf spheroidal satellites. Astrophys. J. 786, 87 (2014).

    Article  ADS  Google Scholar 

  44. Sawala, T. et al. The APOSTLE simulations: solutions to the local group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 457, 1931–1943 (2016).

    Article  ADS  Google Scholar 

  45. Wetzel, A. R. et al. Reconciling dwarf galaxies with ΛCDM cosmology: simulating a realistic population of satellites around a Milky Way-mass galaxy. Astrophys. J. Lett. 827, L23 (2016).

    Article  ADS  Google Scholar 

  46. Gunn, J. E. & Gott, R. J. III. On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  47. Abadi, M. G., Moore, B. & Bower, R. G. Ram pressure stripping of spiral galaxies in clusters. Mon. Not. R. Astron. Soc. 308, 947–954 (1999).

    Article  ADS  Google Scholar 

  48. Font, A. S. et al. The colours of satellite galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 389, 1619–1629 (2008).

    Article  ADS  Google Scholar 

  49. Sales, L. V. et al. The colours of satellite galaxies in the Illustris simulation. Mon. Not. R. Astron. Soc. 447, L6–L10 (2015).

    Article  ADS  Google Scholar 

  50. Benítez-Llambay, A. et al. The imprint of reionization on the star formation histories of dwarf galaxies. Mon. Not. R. Astron. Soc. 450, 4207–4220 (2015).

    Article  ADS  Google Scholar 

  51. Garrison-Kimmel, S. et al. Star formation histories of dwarf galaxies in the FIRE simulations: dependence on mass and local group environment. Mon. Not. R. Astron. Soc. 489, 4574–4588 (2019).

    Article  ADS  Google Scholar 

  52. Wright, A. C., Brooks, A. M., Weisz, D. R. & Christensen, C. R. Reignition of star formation in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 1176–1189 (2019).

    Article  ADS  Google Scholar 

  53. Digby, R. et al. The star formation histories of dwarf galaxies in local group cosmological simulations. Mon. Not. R. Astron. Soc. 485, 5423–5437 (2019).

    Article  ADS  Google Scholar 

  54. Joshi, G. D. et al. The cumulative star-formation histories of dwarf galaxies with TNG50. I: environment-driven diversity and connection to quenching. Mon. Not. R. Astron. Soc. 508, 1652–1674 (2021).

    Article  ADS  Google Scholar 

  55. Gnedin, O. Y., Hernquist, L. & Ostriker, J. P. Tidal shocking by extended mass distributions. Astrophys. J. 514, 109–118 (1999).

    Article  ADS  Google Scholar 

  56. Kazantzidis, S., Łokas, E. L., Callegari, S., Mayer, L. & Moustakas, L. A. On the efficiency of the tidal stirring mechanism for the origin of dwarf spheroidals: dependence on the orbital and structural parameters of the progenitor disky dwarfs. Astrophys. J. 726, 98 (2011).

    Article  ADS  Google Scholar 

  57. Kazantzidis, S., Mayer, L., Callegari, S., Dotti, M. & Moustakas, L. A. The effects of ram-pressure stripping and supernova winds on the tidal stirring of disky dwarfs: enhanced transformation into dwarf spheroidals. Astrophys. J. Lett. 836, L13 (2017).

    Article  ADS  Google Scholar 

  58. Mistani, P. A. et al. On the assembly of dwarf galaxies in clusters and their efficient formation of globular clusters. Mon. Not. R. Astron. Soc. 455, 2323–2336 (2016).

    Article  ADS  Google Scholar 

  59. Artale, M. C., Zehavi, I., Contreras, S. & Norberg, P. The impact of assembly bias on the halo occupation in hydrodynamical simulations. Mon. Not. R. Astron. Soc. 480, 3978–3992 (2018).

    Article  ADS  Google Scholar 

  60. Jackson, R. A. et al. The origin of low-surface-brightness galaxies in the dwarf regime. Mon. Not. R. Astron. Soc. 502, 4262–4276 (2021).

    Article  ADS  Google Scholar 

  61. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    Article  ADS  Google Scholar 

  62. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, L19–L22 (1999).

    Article  ADS  Google Scholar 

  63. Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).

    Article  ADS  Google Scholar 

  64. Simpson, C. M. et al. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 478, 548–567 (2018).

    Article  ADS  Google Scholar 

  65. Garrison-Kimmel, S. et al. The local group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations. Mon. Not. R. Astron. Soc. 487, 1380–1399 (2019).

    Article  ADS  Google Scholar 

  66. Munshi, F. et al. Quantifying scatter in galaxy formation at the lowest masses. Astrophys. J. 923, 35 (2021).

    Article  ADS  Google Scholar 

  67. Font, A. S., McCarthy, I. G. & Belokurov, V. Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues? Mon. Not. R. Astron. Soc. 505, 783–801 (2021).

    Article  ADS  Google Scholar 

  68. Engler, C. et al. The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity. Mon. Not. R. Astron. Soc. 507, 4211–4240 (2021).

    Article  ADS  Google Scholar 

  69. Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).

    Article  ADS  Google Scholar 

  70. Ludlow, A. D. et al. The mass-concentration-redshift relation of cold and warm dark matter haloes. Mon. Not. R. Astron. Soc. 460, 1214–1232 (2016).

    Article  ADS  Google Scholar 

  71. Fattahi, A. et al. The APOSTLE project: local group kinematic mass constraints and simulation candidate selection. Mon. Not. R. Astron. Soc. 457, 844–856 (2016).

    Article  ADS  Google Scholar 

  72. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    Article  ADS  Google Scholar 

  73. Hopkins, P. F. et al. FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480, 800–863 (2018).

    Article  ADS  Google Scholar 

  74. Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 467, 179–207 (2017).

    ADS  Google Scholar 

  75. Applebaum, E. et al. Ultrafaint dwarfs in a Milky Way context: introducing the Mint Condition DC Justice League simulations. Astrophys. J. 906, 96 (2021).

    Article  ADS  Google Scholar 

  76. Behroozi, P. S. et al. Using cumulative number densities to compare galaxies across cosmic time. Astrophys. J. Lett. 777, L10 (2013).

    Article  ADS  Google Scholar 

  77. Moster, B. P., Naab, T. & White, S. D. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    Article  ADS  Google Scholar 

  78. Garrison-Kimmel, S., Bullock, J. S., Boylan-Kolchin, M. & Bardwell, E. Organized chaos: scatter in the relation between stellar mass and halo mass in small galaxies. Mon. Not. R. Astron. Soc. 464, 3108–3120 (2017).

    Article  ADS  Google Scholar 

  79. Wheeler, C. et al. Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Mon. Not. R. Astron. Soc. 453, 1305–1316 (2015).

    Article  ADS  Google Scholar 

  80. Rey, M. P. et al. EDGE: the origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses. Astrophys. J. Lett. 886, L3 (2019).

    Article  ADS  Google Scholar 

  81. Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).

    Article  ADS  Google Scholar 

  82. Jeon, M., Besla, G. & Bromm, V. Connecting the first galaxies with ultrafaint dwarfs in the local group: chemical signatures of population III stars. Astrophys. J. 848, 85 (2017).

    Article  ADS  Google Scholar 

  83. Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 321, 372–384 (2001).

    Article  ADS  Google Scholar 

  84. Giocoli, C., Tormen, G. & van den Bosch, F. C. The population of dark matter subhaloes: mass functions and average mass-loss rates. Mon. Not. R. Astron. Soc. 386, 2135–2144 (2008).

    Article  ADS  Google Scholar 

  85. Yang, X., Mo, H. J., Zhang, Y. & van den Bosch, F. C. An analytical model for the accretion of dark matter subhalos. Astrophys. J. 741, 13 (2011).

    Article  ADS  Google Scholar 

  86. Navarro, J. F. & Steinmetz, M. The effects of a photoionizing ultraviolet background on the formation of disk galaxies. Astrophys. J. 478, 13–28 (1997).

    Article  ADS  Google Scholar 

  87. Gnedin, N. Y. Effect of reionization on structure formation in the Universe. Astrophys. J. 542, 535–541 (2000).

    Article  ADS  Google Scholar 

  88. Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. Reionization and the abundance of galactic satellites. Astrophys. J. 539, 517–521 (2000).

    Article  ADS  Google Scholar 

  89. Somerville, R. S. Can photoionization squelching resolve the substructure crisis? Astrophys. J. Lett. 572, L23–L26 (2002).

    Article  ADS  Google Scholar 

  90. Okamoto, T., Gao, L. & Theuns, T. Mass loss of galaxies due to an ultraviolet background. Mon. Not. R. Astron. Soc. 390, 920–928 (2008).

    Article  ADS  Google Scholar 

  91. Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S. & Frenk, C. S. The effects of photoionization on galaxy formation – I. Model and results at z=0. Mon. Not. R. Astron. Soc. 333, 156–176 (2002).

    Article  ADS  Google Scholar 

  92. Hoeft, M., Yepes, G., Gottlöber, S. & Springel, V. Dwarf galaxies in voids: suppressing star formation with photoheating. Mon. Not. R. Astron. Soc. 371, 401–414 (2006).

    Article  ADS  Google Scholar 

  93. Okamoto, T. & Frenk, C. S. The origin of failed subhaloes and the common mass scale of the Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 399, L174–L178 (2009).

    Article  ADS  Google Scholar 

  94. Benitez-Llambay, A. & Frenk, C. The detailed structure and the onset of galaxy formation in low-mass gaseous dark matter haloes. Mon. Not. R. Astron. Soc. 498, 4887–4900 (2020).

    Article  ADS  Google Scholar 

  95. Benítez-Llambay, A. et al. Mergers and the outside-in formation of dwarf spheroidals. Mon. Not. R. Astron. Soc. 456, 1185–1194 (2016).

    Article  ADS  Google Scholar 

  96. D’Onghia, E., Springel, V., Hernquist, L. & Keres, D. Substructure depletion in the Milky Way halo by the disk. Astrophys. J. 709, 1138–1147 (2010).

    Article  ADS  Google Scholar 

  97. Zolotov, A. et al. Baryons matter: why luminous satellite galaxies have reduced central masses. Astrophys. J. 761, 71 (2012).

    Article  ADS  Google Scholar 

  98. Garrison-Kimmel, S. et al. Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 471, 1709–1727 (2017).

    Article  ADS  Google Scholar 

  99. Graus, A. S. et al. How low does it go? Too few galactic satellites with standard reionization quenching. Mon. Not. R. Astron. Soc. 488, 4585–4595 (2019).

    Article  ADS  Google Scholar 

  100. Kelley, T. et al. Phat ELVIS: the inevitable effect of the Milky Way’s disc on its dark matter subhaloes. Mon. Not. R. Astron. Soc. 487, 4409–4423 (2019).

    Article  ADS  Google Scholar 

  101. van den Bosch, F. C., Ogiya, G., Hahn, O. & Burkert, A. Disruption of dark matter substructure: fact or fiction? Mon. Not. R. Astron. Soc. 474, 3043–3066 (2018).

    Article  ADS  Google Scholar 

  102. van den Bosch, F. C. & Ogiya, G. Dark matter substructure in numerical simulations: a tale of discreteness noise, runaway instabilities, and artificial disruption. Mon. Not. R. Astron. Soc. 475, 4066–4087 (2018).

    Article  ADS  Google Scholar 

  103. Li, M., Gao, L. & Wang, J. The abundance of satellite galaxies in the inner region of ΛCDM Milky Way sized haloes. Mon. Not. R. Astron. Soc. 483, 2000–2006 (2019).

    Article  ADS  Google Scholar 

  104. Bose, S., Deason, A. J., Belokurov, V. & Frenk, C. S. The little things matter: relating the abundance of ultrafaint satellites to the hosts’ assembly history. Mon. Not. R. Astron. Soc. 495, 743–757 (2020).

    Article  ADS  Google Scholar 

  105. Errani, R. & Navarro, J. F. The asymptotic tidal remnants of cold dark matter subhaloes. Mon. Not. R. Astron. Soc. 505, 18–32 (2021).

    Article  ADS  Google Scholar 

  106. Dubinski, J. & Carlberg, R. G. The structure of cold dark matter halos. Astrophys. J. 378, 496 (1991).

    Article  ADS  Google Scholar 

  107. Crone, M. M., Evrard, A. E. & Richstone, D. O. The cosmological dependence of cluster density profiles. Astrophys. J. 434, 402 (1994).

    Article  ADS  Google Scholar 

  108. Navarro, J. F., Frenk, C. S. & White, S. D. M. Simulations of X-ray clusters. Mon. Not. R. Astron. Soc. 275, 720–740 (1995).

    Article  ADS  Google Scholar 

  109. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    Article  ADS  Google Scholar 

  110. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    Article  ADS  Google Scholar 

  111. Einasto, J. On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters. Trudy Astrofizicheskogo Instituta Alma-Ata 5, 87–100 (1965).

    ADS  Google Scholar 

  112. Navarro, J. F. et al. The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 349, 1039–1051 (2004).

    Article  ADS  Google Scholar 

  113. Navarro, J. F. et al. The diversity and similarity of simulated cold dark matter haloes. Mon. Not. R. Astron. Soc. 402, 21–34 (2010).

    Article  ADS  Google Scholar 

  114. Ludlow, A. D. et al. The mass profile and accretion history of cold dark matter haloes. Mon. Not. R. Astron. Soc. 432, 1103–1113 (2013).

    Article  ADS  Google Scholar 

  115. de Blok, W. J. G. et al. High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008).

    Article  ADS  Google Scholar 

  116. Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F. & Kennicutt, R. C. Jr Dark and luminous matter in THINGS dwarf galaxies. Astron. J. 141, 193 (2011).

    Article  ADS  Google Scholar 

  117. Flores, R. A. & Primack, J. R. Observational and theoretical constraints on singular dark matter halos. Astrophys. J. Lett. 427, L1 (1994).

    Article  ADS  Google Scholar 

  118. Moore, B. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629–631 (1994).

    Article  ADS  Google Scholar 

  119. Battaglia, G. et al. The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy. Astrophys. J. Lett. 681, L13 (2008).

    Article  ADS  Google Scholar 

  120. Amorisco, N. C. & Evans, N. W. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 419, 184–196 (2012).

    Article  ADS  Google Scholar 

  121. Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

    Article  ADS  Google Scholar 

  122. Strigari, L. E., Frenk, C. S. & White, S. D. M. Dynamical models for the Sculptor dwarf spheroidal in a ΛCDM Universe. Astrophys. J. 838, 123 (2017).

    Article  ADS  Google Scholar 

  123. Genina, A. et al. The core-cusp problem: a matter of perspective. Mon. Not. R. Astron. Soc. 474, 1398–1411 (2018).

    Article  ADS  Google Scholar 

  124. Harvey, D., Revaz, Y., Robertson, A. & Hausammann, L. The impact of cored density profiles on the observable quantities of dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 481, L89–L93 (2018).

    Article  ADS  Google Scholar 

  125. Weinberg, D. H., Bullock, J. S., Governato, F., Kuzio de Naray, R. & Peter, A. H. G. Cold dark matter: controversies on small scales. Proc. Natl Acad. Sci. USA 112, 12249–12255 (2015).

    Article  ADS  Google Scholar 

  126. Oman, K. A. et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 452, 3650–3665 (2015).

    Article  ADS  Google Scholar 

  127. Oman, K. A. et al. Non-circular motions and the diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 482, 821–847 (2019).

    Article  ADS  Google Scholar 

  128. Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).

    Article  ADS  Google Scholar 

  129. Gelato, S. & Sommer-Larsen, J. On DDO 154 and cold dark matter halo profiles. Mon. Not. R. Astron. Soc. 303, 321–328 (1999).

    Article  ADS  Google Scholar 

  130. Read, J. I. & Gilmore, G. Mass loss from dwarf spheroidal galaxies: the origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 356, 107–124 (2005).

    Article  ADS  Google Scholar 

  131. Pontzen, A. & Governato, F. How supernova feedback turns dark matter cusps into cores. Mon. Not. R. Astron. Soc. 421, 3464–3471 (2012).

    Article  ADS  Google Scholar 

  132. Mashchenko, S., Wadsley, J. & Couchman, H. M. P. Stellar feedback in dwarf galaxy formation. Science 319, 174 (2008).

    Article  ADS  Google Scholar 

  133. Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013).

    Article  ADS  Google Scholar 

  134. Bose, S. et al. No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Mon. Not. R. Astron. Soc. 486, 4790–4804 (2019).

    Article  ADS  Google Scholar 

  135. Benítez-Llambay, A., Frenk, C. S., Ludlow, A. D. & Navarro, J. F. Baryon-induced dark matter cores in the EAGLE simulations. Mon. Not. R. Astron. Soc. 488, 2387–2404 (2019).

    Article  ADS  Google Scholar 

  136. Dutton, A. A. et al. NIHAO XX: the impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes. Mon. Not. R. Astron. Soc. 486, 655–671 (2019).

    Article  ADS  Google Scholar 

  137. Dutton, A. A. et al. NIHAO – XXV. Convergence in the cusp-core transformation of cold dark matter haloes at high star formation thresholds. Mon. Not. R. Astron. Soc. 499, 2648–2661 (2020).

    Article  ADS  Google Scholar 

  138. Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012).

    Article  ADS  Google Scholar 

  139. Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).

    Article  ADS  Google Scholar 

  140. Oñorbe, J. et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 2092–2106 (2015).

    Article  ADS  Google Scholar 

  141. Chan, T. K. et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 454, 2981–3001 (2015).

    Article  ADS  Google Scholar 

  142. Tollet, E. et al. NIHAO - IV: core creation and destruction in dark matter density profiles across cosmic time. Mon. Not. R. Astron. Soc. 456, 3542–3552 (2016).

    Article  ADS  Google Scholar 

  143. Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).

    Article  ADS  Google Scholar 

  144. Lazar, A. et al. A dark matter profile to model diverse feedback-induced core sizes of ΛCDM haloes. Mon. Not. R. Astron. Soc. 497, 2393–2417 (2020).

    Article  ADS  Google Scholar 

  145. Jahn, E. D. et al. Real and counterfeit cores: how feedback expands halos and disrupts tracers of inner gravitational potential in dwarf galaxies. Preprint at https://arxiv.org/abs/2110.00142 (2021).

  146. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM. Mon. Not. R. Astron. Soc. 462, 3628–3645 (2016).

    Article  ADS  Google Scholar 

  147. El-Badry, K. et al. When the jeans do not fit: how stellar feedback drives stellar kinematics and complicates dynamical modeling in low-mass galaxies. Astrophys. J. 835, 193 (2017).

    Article  ADS  Google Scholar 

  148. El-Badry, K. et al. Breathing FIRE: how stellar feedback drives radial migration, rapid size fluctuations, and population gradients in low-mass galaxies. Astrophys. J. 820, 131 (2016).

    Article  ADS  Google Scholar 

  149. Read, J. I., Iorio, G., Agertz, O. & Fraternali, F. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation. Mon. Not. R. Astron. Soc. 467, 2019–2038 (2017).

    ADS  Google Scholar 

  150. Read, J. I., Walker, M. G. & Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 484, 1401–1420 (2019).

    Article  ADS  Google Scholar 

  151. Laporte, C. F. P. & Penarrubia, J. Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales. Mon. Not. R. Astron. Soc. 449, L90–L94 (2015).

    Article  ADS  Google Scholar 

  152. Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).

    Article  ADS  Google Scholar 

  153. Burger, J. D. & Zavala, J. SN-driven mechanism of cusp-core transformation: an appraisal. Astrophys. J. 921, 126 (2021).

    Article  ADS  Google Scholar 

  154. Sales, L. V. et al. Feedback and the structure of simulated galaxies at redshift z=2. Mon. Not. R. Astron. Soc. 409, 1541–1556 (2010).

    Article  ADS  Google Scholar 

  155. Scannapieco, C. et al. The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation. Mon. Not. R. Astron. Soc. 423, 1726–1749 (2012).

    Article  ADS  Google Scholar 

  156. Agertz, O. & Kravtsov, A. V. On the interplay between star formation and feedback in galaxy formation simulations. Astrophys. J. 804, 18 (2015).

    Article  ADS  Google Scholar 

  157. Agertz, O. & Kravtsov, A. V. The impact of stellar feedback on the structure, size, and morphology of galaxies in Milky-Way-sized dark matter halos. Astrophys. J. 824, 79 (2016).

    Article  ADS  Google Scholar 

  158. Peñarrubia, J., Pontzen, A., Walker, M. G. & Koposov, S. E. The coupling between the core/cusp and missing satellite problems. Astrophys. J. Lett. 759, L42 (2012).

    Article  ADS  Google Scholar 

  159. Madau, P., Shen, S. & Governato, F. Dark matter heating and early core formation in dwarf galaxies. Astrophys. J. Lett. 789, L17 (2014).

    Article  ADS  Google Scholar 

  160. Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).

    Article  ADS  Google Scholar 

  161. Maxwell, A. J., Wadsley, J. & Couchman, H. M. P. The energetics of cusp destruction. Astrophys. J. 806, 229 (2015).

    Article  ADS  Google Scholar 

  162. Relatores, N. C. et al. The dark matter distributions in low-mass disk galaxies. II. The inner density profiles. Astrophys. J. 887, 94 (2019).

    Article  ADS  Google Scholar 

  163. Zavala, J., Lovell, M. R., Vogelsberger, M. & Burger, J. D. Diverse dark matter density at sub-kiloparsec scales in Milky Way satellites: implications for the nature of dark matter. Phys. Rev. D 100, 063007 (2019).

    Article  ADS  Google Scholar 

  164. Read, J. I., Walker, M. G. & Steger, P. The case for a cold dark matter cusp in Draco. Mon. Not. R. Astron. Soc. 481, 860–877 (2018).

    Article  ADS  Google Scholar 

  165. Massari, D. et al. Stellar 3D kinematics in the Draco dwarf spheroidal galaxy. Astron. Astrophys. 633, A36 (2020).

    Article  Google Scholar 

  166. Santos-Santos, I. M. E. et al. Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 495, 58–77 (2020).

    Article  ADS  Google Scholar 

  167. Oman, K. A. et al. Missing dark matter in dwarf galaxies? Mon. Not. R. Astron. Soc. 460, 3610–3623 (2016).

    Article  ADS  Google Scholar 

  168. Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated local group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).

    Article  ADS  Google Scholar 

  169. van Dokkum, P. et al. A galaxy lacking dark matter. Nature 555, 629–632 (2018).

    Article  ADS  Google Scholar 

  170. Danieli, S., van Dokkum, P., Conroy, C., Abraham, R. & Romanowsky, A. J. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2. Astrophys. J. Lett. 874, L12 (2019).

    Article  ADS  Google Scholar 

  171. van Dokkum, P., Danieli, S., Abraham, R., Conroy, C. & Romanowsky, A. J. A second galaxy missing dark matter in the NGC 1052 group. Astrophys. J. Lett. 874, L5 (2019).

    Article  ADS  Google Scholar 

  172. Torrealba, G. et al. The hidden giant: discovery of an enormous galactic dwarf satellite in Gaia DR2. Mon. Not. R. Astron. Soc. 488, 2743–2766 (2019).

    Article  ADS  Google Scholar 

  173. Santos-Santos, I. M. et al. NIHAO – XIV. Reproducing the observed diversity of dwarf galaxy rotation curve shapes in ΛCDM. Mon. Not. R. Astron. Soc. 473, 4392–4403 (2018).

    Article  ADS  Google Scholar 

  174. Sparre, M. et al. (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies. Mon. Not. R. Astron. Soc. 466, 88–104 (2017).

    Article  ADS  Google Scholar 

  175. Iyer, K. G. et al. The diversity and variability of star formation histories in models of galaxy evolution. Mon. Not. R. Astron. Soc. 498, 430–463 (2020).

    Article  ADS  Google Scholar 

  176. Wheeler, C. et al. The no-spin zone: rotation versus dispersion support in observed and simulated dwarf galaxies. Mon. Not. R. Astron. Soc. 465, 2420–2431 (2017).

    Article  ADS  Google Scholar 

  177. McConnachie, A. W. The observed properties of dwarf galaxies in and around the local group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  178. Grand, R. J. J. et al. Determining the full satellite population of a Milky Way-mass halo in a highly resolved cosmological hydrodynamic simulation. Mon. Not. R. Astron. Soc. 507, 4953–4967 (2021).

    Article  ADS  Google Scholar 

  179. Brodie, J. P., Romanowsky, A. J., Strader, J. & Forbes, D. A. The relationships among compact stellar systems: a fresh view of ultracompact dwarfs. Astron. J. 142, 199 (2011).

    Article  ADS  Google Scholar 

  180. van der Burg, R. F. J., Muzzin, A. & Hoekstra, H. The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters. Astron. Astrophys. 590, A20 (2016).

    Article  Google Scholar 

  181. van der Burg, R. F. J. et al. The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are relatively more common in more massive haloes. Astron. Astrophys. 607, A79 (2017).

    Article  Google Scholar 

  182. Patel, S. G., Kelson, D. D., Diao, N., Tonnesen, S. & Abramson, L. E. Testing the breathing mode in intermediate-mass galaxies and its predicted star formation rate-size anti-correlation. Astrophys. J. Lett. 866, L21 (2018).

    Article  ADS  Google Scholar 

  183. Hirtenstein, J. et al. The OSIRIS Lens-amplified Survey (OLAS). I. Dynamical effects of stellar feedback in low-mass galaxies at z ~ 2. Astrophys. J. 880, 54 (2019).

    Article  ADS  Google Scholar 

  184. Pelliccia, D. et al. Effects of stellar feedback on stellar and gas kinematics of star-forming galaxies at 0.6 < z < 1.0. Astrophys. J. Lett. 896, L26 (2020).

    Article  ADS  Google Scholar 

  185. Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    Article  ADS  Google Scholar 

  186. Emami, N. et al. A closer look at bursty star formation with LHα and LUV Distributions. Astrophys. J. 881, 71 (2019).

    Article  ADS  Google Scholar 

  187. Cignoni, M. et al. Star formation histories of the LEGUS dwarf galaxies. III. The nonbursty nature of 23 star-forming dwarf galaxies. Astrophys. J. 887, 112 (2019).

    Article  ADS  Google Scholar 

  188. Mercado, F. J. et al. A relationship between stellar metallicity gradients and galaxy age in dwarf galaxies. Mon. Not. R. Astron. Soc. 501, 5121–5134 (2021).

    Article  ADS  Google Scholar 

  189. Stinson, G. S. et al. Feedback and the formation of dwarf galaxy stellar haloes. Mon. Not. R. Astron. Soc. 395, 1455–1466 (2009).

    Article  ADS  Google Scholar 

  190. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011).

    Article  ADS  Google Scholar 

  191. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 422, 1203–1218 (2012).

    Article  ADS  Google Scholar 

  192. Tollerud, E. J. et al. The SPLASH Survey: spectroscopy of 15 M31 dwarf spheroidal satellite galaxies. Astrophys. J. 752, 45 (2012).

    Article  ADS  Google Scholar 

  193. Collins, M. L. M. et al. A kinematic study of the Andromeda dwarf spheroidal system. Astrophys. J. 768, 172 (2013).

    Article  ADS  Google Scholar 

  194. Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S. & Kirby, E. N. Too big to fail in the local group. Mon. Not. R. Astron. Soc. 444, 222–236 (2014).

    Article  ADS  Google Scholar 

  195. Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V. & Gurovich, S. The dark matter haloes of dwarf galaxies: a challenge for the Λ cold dark matter paradigm? Mon. Not. R. Astron. Soc. 425, 2817–2823 (2012).

    Article  ADS  Google Scholar 

  196. Papastergis, E. & Shankar, F. An assessment of the “too big to fail” problem for field dwarf galaxies in view of baryonic feedback effects. Astron. Astrophys. 591, A58 (2016).

    Article  ADS  Google Scholar 

  197. Wang, J., Frenk, C. S., Navarro, J. F., Gao, L. & Sawala, T. The missing massive satellites of the Milky Way. Mon. Not. R. Astron. Soc. 424, 2715–2721 (2012).

    Article  ADS  Google Scholar 

  198. Vera-Ciro, C. A., Helmi, A., Starkenburg, E. & Breddels, M. A. Not too big, not too small: the dark haloes of the dwarf spheroidals in the Milky Way. Mon. Not. R. Astron. Soc. 428, 1696–1703 (2013).

    Article  ADS  Google Scholar 

  199. Boylan-Kolchin, M., Bullock, J. S., Sohn, S. T., Besla, G. & van der Marel, R. P. The space motion of Leo I: the mass of the Milky Way’s dark matter halo. Astrophys. J. 768, 140 (2013).

    Article  ADS  Google Scholar 

  200. Jiang, F. & van den Bosch, F. C. Comprehensive assessment of the too big to fail problem. Mon. Not. R. Astron. Soc. 453, 3575–3592 (2015).

    Article  ADS  Google Scholar 

  201. Fielder, C. E., Mao, Y.-Y., Newman, J. A., Zentner, A. R. & Licquia, T. C. Predictably missing satellites: subhalo abundances in Milky Way-like haloes. Mon. Not. R. Astron. Soc. 486, 4545–4568 (2019).

    Article  ADS  Google Scholar 

  202. Fattahi, A., Navarro, J. F. & Frenk, C. S. The missing dwarf galaxies of the local group. Mon. Not. R. Astron. Soc. 493, 2596–2605 (2020).

    Article  ADS  Google Scholar 

  203. Brook, C. B. & Di Cintio, A. Expanded haloes, abundance matching and too-big-to-fail in the local group. Mon. Not. R. Astron. Soc. 450, 3920–3934 (2015).

    Article  ADS  Google Scholar 

  204. Peñarrubia, J. et al. The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies. Mon. Not. R. Astron. Soc. 406, 1290–1305 (2010).

    ADS  Google Scholar 

  205. Errani, R., Peñarrubia, J., Laporte, C. F. P. & Gómez, F. A. The effect of a disc on the population of cuspy and cored dark matter substructures in Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 465, L59–L63 (2017).

    Article  ADS  Google Scholar 

  206. Samuel, J. et al. A profile in FIRE: resolving the radial distributions of satellite galaxies in the local group with simulations. Mon. Not. R. Astron. Soc. 491, 1471–1490 (2020).

    Article  ADS  Google Scholar 

  207. Sawala, T. et al. The abundance of (not just) dark matter haloes. Mon. Not. R. Astron. Soc. 431, 1366–1382 (2013).

    Article  ADS  Google Scholar 

  208. Macciò, A. V. et al. NIHAO X: reconciling the local galaxy velocity function with cold dark matter via mock H I observations. Mon. Not. R. Astron. Soc. 463, L69–L73 (2016).

    Article  ADS  Google Scholar 

  209. Brooks, A. M. et al. How to reconcile the observed velocity function of galaxies with theory. Astrophys. J. 850, 97 (2017).

    Article  ADS  Google Scholar 

  210. Verbeke, R., Papastergis, E., Ponomareva, A. A., Rathi, S. & De Rijcke, S. A new astrophysical solution to the too big to fail problem. Insights from the MORIA simulations. Astron. Astrophys. 607, A13 (2017).

    Article  Google Scholar 

  211. Chauhan, G. et al. The H I velocity function: a test of cosmology or baryon physics? Mon. Not. R. Astron. Soc. 488, 5898–5915 (2019).

    Article  ADS  Google Scholar 

  212. Mancera Piña, P. E. et al. Off the baryonic Tully-Fisher relation: a population of baryon-dominated ultra-diffuse galaxies. Astrophys. J. Lett. 883, L33 (2019).

    Article  ADS  Google Scholar 

  213. Mancera Piña, P. E. et al. No need for dark matter: resolved kinematics of the ultra-diffuse galaxy AGC 114905. Mon. Not. R. Astron. Soc. 512, 3230–3242 (2021).

    Article  ADS  Google Scholar 

  214. Moore, B., Katz, N. & Lake, G. On the destruction and overmerging of dark halos in dissipationless N-body simulations. Astrophys. J. 457, 455 (1996).

    Article  ADS  Google Scholar 

  215. Diemand, J. et al. Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008).

    Article  ADS  Google Scholar 

  216. Stadel, J. et al. Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. 398, L21–L25 (2009).

    Article  ADS  Google Scholar 

  217. Taylor, J. E. & Babul, A. The dynamics of sinking satellites around disk galaxies: a poor man’s alternative to high-resolution numerical simulations. Astrophys. J. 559, 716–735 (2001).

    Article  ADS  Google Scholar 

  218. Garrison-Kimmel, S. et al. Not so lumpy after all: modelling the depletion of dark matter subhaloes by Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 471, 1709–1727 (2017).

    Article  ADS  Google Scholar 

  219. Sawala, T. et al. Shaken and stirred: the Milky Way’s dark substructures. Mon. Not. R. Astron. Soc. 467, 4383–4400 (2017).

    Article  ADS  Google Scholar 

  220. Libeskind, N. I. et al. The HESTIA project: simulations of the local group. Mon. Not. R. Astron. Soc. 498, 2968–2983 (2020).

    Article  ADS  Google Scholar 

  221. Carlsten, S. G., Greene, J. E., Peter, A. H. G., Greco, J. P. & Beaton, R. L. Radial distributions of dwarf satellite systems in the local volume. Astrophys. J. 902, 124 (2020).

    Article  ADS  Google Scholar 

  222. Lynden-Bell, D. Dwarf galaxies and globular clusters in high velocity hydrogen streams. Mon. Not. R. Astron. Soc. 174, 695–710 (1976).

    Article  ADS  Google Scholar 

  223. Kroupa, P., Theis, C. & Boily, C. M. The great disk of Milky-Way satellites and cosmological sub-structures. Astron. Astrophys. 431, 517–521 (2005).

    Article  ADS  Google Scholar 

  224. Pawlowski, M. S. et al. Filamentary accretion cannot explain the orbital poles of the Milky Way satellites. Mon. Not. R. Astron. Soc. 424, 80–92 (2012).

    Article  ADS  Google Scholar 

  225. Fritz, T. K. et al. Gaia DR2 proper motions of dwarf galaxies within 420 kpc. Orbits, Milky Way mass, tidal influences, planar alignments, and group infall. Astron. Astrophys. 619, A103 (2018).

    Article  Google Scholar 

  226. Pawlowski, M. S. & Kroupa, P. The Milky Way’s disc of classical satellite galaxies in light of Gaia DR2. Mon. Not. R. Astron. Soc. 491, 3042–3059 (2020).

    Article  ADS  Google Scholar 

  227. Conn, A. R. et al. The three-dimensional structure of the M31 satellite system; strong evidence for an inhomogeneous distribution of satellites. Astrophys. J. 766, 120 (2013).

    Article  ADS  Google Scholar 

  228. Ibata, R. A., Lewis, G. F. & Conn, A. R. et al. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy. Nature 493, 62–65 (2013).

    Article  ADS  Google Scholar 

  229. Müller, O., Pawlowski, M. S., Jerjen, H. & Lelli, F. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology. Science 359, 534–537 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  230. Müller, O. et al. The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛCDM cosmology. Astron. Astrophys. 645, L5 (2021).

    Article  ADS  Google Scholar 

  231. Müller, O., Scalera, R., Binggeli, B. & Jerjen, H. The M 101 group complex: new dwarf galaxy candidates and spatial structure. Astron. Astrophys. 602, A119 (2017).

    Article  ADS  Google Scholar 

  232. Heesters, N. et al. Flattened structures of dwarf satellites around massive host galaxies in the MATLAS low-to-moderate density fields. Astron. Astrophys. 654, A161 (2021).

    Article  Google Scholar 

  233. Metz, M., Kroupa, P. & Libeskind, N. I. The orbital poles of Milky Way satellite galaxies: a rotationally supported disk of satellites. Astrophys. J. 680, 287–294 (2008).

    Article  ADS  Google Scholar 

  234. Cautun, M. et al. Planes of satellite galaxies: when exceptions are the rule. Mon. Not. R. Astron. Soc. 452, 3838–3852 (2015).

    Article  ADS  Google Scholar 

  235. Buck, T., Dutton, A. A. & Macciò, A. V. Simulated ΛCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures. Mon. Not. R. Astron. Soc. 460, 4348–4365 (2016).

    Article  ADS  Google Scholar 

  236. Pawlowski, M. S. The planes of satellite galaxies problem, suggested solutions, and open questions. Mod. Phys. Lett. A 33, 1830004 (2018).

    Article  ADS  Google Scholar 

  237. Pawlowski, M. S. It’s time for some plane speaking. Nat. Astron. 5, 1185–1187 (2021).

    Article  ADS  Google Scholar 

  238. Boylan-Kolchin, M. Planes of satellites are not a problem for (just) LCDM. Nat. Astron. 5, 1188–1190 (2021).

    Article  ADS  Google Scholar 

  239. Samuel, J. et al. Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the local group. Mon. Not. R. Astron. Soc. 504, 1379–1397 (2021).

    Article  ADS  Google Scholar 

  240. Li, Y.-S. & Helmi, A. Infall of substructures on to a Milky Way-like dark halo. Mon. Not. R. Astron. Soc. 385, 1365–1373 (2008).

    Article  ADS  Google Scholar 

  241. D’Onghia, E. & Lake, G. Small dwarf galaxies within larger dwarfs: why some are luminous while most go dark. Astrophys. J. Lett. 686, L61 (2008).

    Article  ADS  Google Scholar 

  242. Sales, L. V. et al. Clues to the ’Magellanic Galaxy’ from cosmological simulations. Mon. Not. R. Astron. Soc. 418, 648–658 (2011).

    Article  ADS  Google Scholar 

  243. Deason, A. J., Wetzel, A. R., Garrison-Kimmel, S. & Belokurov, V. Satellites of LMC-mass dwarfs: close friendships ruined by Milky Way mass haloes. Mon. Not. R. Astron. Soc. 453, 3568–3574 (2015).

    Article  ADS  Google Scholar 

  244. Santos-Santos, I. M. E., Fattahi, A., Sales, L. V. & Navarro, J. F. Magellanic satellites in ΛCDM cosmological hydrodynamical simulations of the local group. Mon. Not. R. Astron. Soc. 504, 4551–4567 (2021).

    Article  ADS  Google Scholar 

  245. Garavito-Camargo, N. et al. The clustering of orbital poles induced by the LMC: hints for the origin of planes of satellites. Astrophys. J. 923, 140 (2021).

    Article  ADS  Google Scholar 

  246. Pawlowski, M. S. & McGaugh, S. S. Co-orbiting planes of sub-halos are similarly unlikely around paired and isolated hosts. Astrophys. J. Lett. 789, L24 (2014).

    Article  ADS  Google Scholar 

  247. Neuzil, M. K., Mansfield, P. & Kravtsov, A. V. The sheet of giants: unusual properties of the Milky Way’s immediate neighbourhood. Mon. Not. R. Astron. Soc. 494, 2600–2617 (2020).

    Article  ADS  Google Scholar 

  248. Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85 (2012).

    Article  ADS  Google Scholar 

  249. Makarov, D. et al. A unique isolated dwarf spheroidal galaxy at D = 1.9 Mpc. Mon. Not. R. Astron. Soc. 425, 709–719 (2012).

    Article  ADS  Google Scholar 

  250. Karachentsev, I. D., Makarova, L. N., Makarov, D. I., Tully, R. B. & Rizzi, L. A new isolated dSph galaxy near the local group. Mon. Not. R. Astron. Soc. 447, L85–L89 (2015).

    Article  ADS  Google Scholar 

  251. Polzin, A., van Dokkum, P., Danieli, S., Greco, J. P. & Romanowsky, A. J. A recently quenched isolated dwarf galaxy outside of the local group environment. Astrophys. J. Lett. 914, L23 (2021).

    Article  ADS  Google Scholar 

  252. Weisz, D. R. et al. The star formation histories of local group dwarf galaxies. III. Characterizing quenching in low-mass galaxies. Astrophys. J. 804, 136 (2015).

    Article  ADS  Google Scholar 

  253. Wetzel, A. R., Tollerud, E. J. & Weisz, D. R. Rapid environmental quenching of satellite dwarf galaxies in the local group. Astrophys. J. Lett. 808, L27 (2015).

    Article  ADS  Google Scholar 

  254. Putman, M. E. et al. The gas content and stripping of local group dwarf galaxies. Astrophys. J. 913, 53 (2021).

    Article  ADS  Google Scholar 

  255. Akins, H. B. et al. Quenching timescales of dwarf satellites around Milky Way-mass hosts. Astrophys. J. 909, 139 (2021).

    Article  ADS  Google Scholar 

  256. Karunakaran, A. et al. Satellites around Milky Way analogs: tension in the number and fraction of quiescent satellites seen in observations versus simulations. Astrophys. J. Lett. 916, L19 (2021).

    Article  ADS  Google Scholar 

  257. Font, A. S., McCarthy, I. G., Belokurov, V., Brown, S. T. & Stafford, S. G. Quenching of satellite galaxies of Milky Way analogues: reconciling theory and observations. Mon. Not. R. Astron. Soc. 505, 783–801 (2021).

    Article  ADS  Google Scholar 

  258. Samuel, J. et al. Extinguishing the FIRE: environmental quenching of satellite galaxies around Milky Way-mass hosts in simulations.Preprint at https://arxiv.org/abs/2203.07385 (2022).

  259. Hausammann, L., Revaz, Y. & Jablonka, P. Satellite dwarf galaxies: stripped but not quenched. Astron. Astrophys. 624, A11 (2019).

    Article  ADS  Google Scholar 

  260. Geha, M. et al. The SAGA Survey. I. Satellite galaxy populations around eight Milky Way analogs. Astrophys. J. 847, 4 (2017).

    Article  ADS  Google Scholar 

  261. Mao, Y.-Y. et al. The SAGA Survey. II. Building a statistical sample of satellite systems around Milky Way-like galaxies. Astrophys. J. 907, 85 (2021).

    Article  ADS  Google Scholar 

  262. Tremmel, M. et al. Introducing ROMULUSC: a cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 483, 3336–3362 (2019).

    Article  ADS  Google Scholar 

  263. Pillepich, A. et al. First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Mon. Not. R. Astron. Soc. 490, 3196–3233 (2019).

    Article  ADS  Google Scholar 

  264. Nelson, D. et al. First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Mon. Not. R. Astron. Soc. 490, 3234–3261 (2019).

    Article  ADS  Google Scholar 

  265. Dubois, Y. et al. Introducing the NewHorizon simulation: galaxy properties with resolved internal dynamics across cosmic time. Astron. Astrophys. 651, A109 (2021).

    Article  Google Scholar 

  266. Penny, S. J. et al. SDSS-IV MaNGA: evidence of the importance of AGN feedback in low-mass galaxies. Mon. Not. R. Astron. Soc. 476, 979–998 (2018).

    Article  ADS  Google Scholar 

  267. Dickey, C. M., Geha, M., Wetzel, A. & El-Badry, K. AGN all the way down? AGN-like line ratios are common in the lowest-mass isolated quiescent galaxies. Astrophys. J. 884, 180 (2019).

    Article  ADS  Google Scholar 

  268. Manzano-King, C. M., Canalizo, G. & Sales, L. V. AGN-driven outflows in dwarf galaxies. Astrophys. J. 884, 54 (2019).

    Article  ADS  Google Scholar 

  269. Greene, J. E., Strader, J. & Ho, L. C. Intermediate-mass black holes. Annu. Rev. Astron. Astrophys. 58, 257–312 (2020).

    Article  ADS  Google Scholar 

  270. Bellovary, J. M. et al. Multimessenger signatures of massive black holes in dwarf galaxies. Mon. Not. R. Astron. Soc. 482, 2913–2923 (2019).

    ADS  Google Scholar 

  271. Sharma, R. S. et al. Black hole growth and feedback in isolated ROMULUS25 dwarf galaxies. Astrophys. J. 897, 103 (2020).

    Article  ADS  Google Scholar 

  272. Koudmani, S., Henden, N. A. & Sijacki, D. A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations. Mon. Not. R. Astron. Soc. 503, 3568–3591 (2021).

    Article  ADS  Google Scholar 

  273. Volonteri, M. et al. Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Mon. Not. R. Astron. Soc. 498, 2219–2238 (2020).

    Article  ADS  Google Scholar 

  274. Uhlig, M. et al. Galactic winds driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 423, 2374–2396 (2012).

    Article  ADS  Google Scholar 

  275. Pakmor, R., Pfrommer, C., Simpson, C. M. & Springel, V. Galactic winds driven by isotropic and anisotropic cosmic-ray diffusion in disk galaxies. Astrophys. J. Lett. 824, L30 (2016).

    Article  ADS  Google Scholar 

  276. Chen, J., Bryan, G. L. & Salem, M. Cosmological simulations of dwarf galaxies with cosmic ray feedback. Mon. Not. R. Astron. Soc. 460, 3335–3344 (2016).

    Article  ADS  Google Scholar 

  277. Bustard, C., Zweibel, E. G., D’Onghia, E., Gallagher, J. S. III. & Farber, R. Cosmic-ray-driven outflows from the Large Magellanic Cloud: contributions to the LMC filament. Astrophys. J. 893, 29 (2020).

    Article  ADS  Google Scholar 

  278. Dashyan, G. & Dubois, Y. Cosmic ray feedback from supernovae in dwarf galaxies. Astron. Astrophys. 638, A123 (2020).

    Article  ADS  Google Scholar 

  279. Hopkins, P. F. et al. Effects of different cosmic ray transport models on galaxy formation. Mon. Not. R. Astron. Soc. 501, 3663–3669 (2021).

    Article  ADS  Google Scholar 

  280. Semenov, V. A., Kravtsov, A. V. & Caprioli, D. Cosmic-ray diffusion suppression in star-forming regions inhibits clump formation in gas-rich galaxies. Astrophys. J. 910, 126 (2021).

    Article  ADS  Google Scholar 

  281. Wise, J. H., Turk, M. J., Norman, M. L. & Abel, T. The birth of a galaxy: primordial metal enrichment and stellar populations. Astrophys. J. 745, 50 (2012).

    Article  ADS  Google Scholar 

  282. Johnson, J. L., Dalla Vecchia, C. & Khochfar, S. The First Billion Years project: the impact of stellar radiation on the co-evolution of Populations II and III. Mon. Not. R. Astron. Soc. 428, 1857–1872 (2013).

    Article  ADS  Google Scholar 

  283. Paardekooper, J. P., Khochfar, S. & Dalla, C. V. The First Billion Years Project: proto-galaxies reionizing the universe. Mon. Not. R. Astron. Soc. 429, L94–L98 (2013).

    Article  ADS  Google Scholar 

  284. Wise, J. H. et al. The birth of a galaxy – III. Propelling reionization with the faintest galaxies. Mon. Not. R. Astron. Soc. 442, 2560–2579 (2014).

    Article  ADS  Google Scholar 

  285. Dayal, P. & Ferrara, A. Early galaxy formation and its large-scale effects. Phys. Rep. 780, 1–64 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  286. Genel, S. et al. A quantification of the butterfly effect in cosmological simulations and implications for galaxy scaling relations. Astrophys. J. 871, 21 (2019).

    Article  ADS  Google Scholar 

  287. Keller, B. W., Wadsley, J. W., Wang, L. & Kruijssen, J. M. D. Chaos and variance in galaxy formation. Mon. Not. R. Astron. Soc. 482, 2244–2261 (2019).

    Article  ADS  Google Scholar 

  288. Sales, L. V., Wang, W., White, S. D. M. & Navarro, J. F. Satellites and haloes of dwarf galaxies. Mon. Not. R. Astron. Soc. 428, 573–578 (2013).

    Article  ADS  Google Scholar 

  289. Dooley, G. A. et al. The predicted luminous satellite populations around SMC- and LMC-mass galaxies - a missing satellite problem around the LMC? Mon. Not. R. Astron. Soc. 472, 1060–1073 (2017).

    Article  ADS  Google Scholar 

  290. Jahn, E. D. et al. Dark and luminous satellites of LMC-mass galaxies in the FIRE simulations. Mon. Not. R. Astron. Soc. 489, 5348–5364 (2019).

    Article  ADS  Google Scholar 

  291. Drlica-Wagner, A. et al. The DECam Local Volume Exploration Survey: overview and first data release. Astrophys. J. S. 256, 2 (2021).

    Article  ADS  Google Scholar 

  292. Carlin, J. L. et al. Hubble Space Telescope observations of two faint dwarf satellites of nearby LMC analogs from MADCASH. Astrophys. J. 909, 211 (2021).

    Article  ADS  Google Scholar 

  293. Davis, A. B. et al. The LBT satellites of Nearby Galaxies Survey (LBT-SONG): the satellite population of NGC 628. Mon. Not. R. Astron. Soc. 500, 3854–3869 (2021).

    Article  ADS  Google Scholar 

  294. Roberts, D. M., Nierenberg, A. M. & Peter, A. H. G. The luminosity functions and redshift evolution of satellites of low-mass galaxies in the COSMOS survey. Mon. Not. R. Astron. Soc. 502, 1205–1217 (2021).

    Article  ADS  Google Scholar 

  295. Müller, O. & Jerjen, H. Abundance of dwarf galaxies around low-mass spiral galaxies in the Local Volume. Astron. Astrophys. 644, A91 (2020).

    Article  ADS  Google Scholar 

  296. Munshi, F. et al. Dancing in the dark: uncertainty in ultrafaint dwarf galaxy predictions from cosmological simulations. Astrophys. J. 874, 40 (2019).

    Article  ADS  Google Scholar 

  297. Ji, A. P. et al. Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S5). Astrophys. J. 921, 32 (2021).

    Article  ADS  Google Scholar 

  298. Jahn, E. D. et al. The effects of LMC-mass environments on their dwarf satellite galaxies in the FIRE simulations. Preprint at https://arxiv.org/abs/2106.03861 (2021).

Download references

Acknowledgements

We thank J. Samuel, A. Karunakaran, Y. Revaz, R. Grand and F. Munshi for sharing simulation data. We also thank K. Oman for generating Fig. 3. L.V.S. is grateful for financial support from NASA ATP grant number 80NSSC20K0566, NSF AST grant numbers 1817233 and 2107993 and NSF CAREER grant number 1945310. A.W. received support from: NSF grant numbers CAREER 2045928 and 2107772; NASA ATP grant numbers 80NSSC18K1097 and 80NSSC20K0513; HST grant numbers AR-15057, AR-15809, GO-15902 and GO-16273 from STScI; a Scialog Award from the Heising-Simons Foundation; and a Hellman Fellowship. A.F. is supported by a UKRI Future Leaders Fellowship (grant number MR/T042362/1).

Author information

Authors and Affiliations

Authors

Contributions

All the authors in this review have made substantial contribution to the discussion, writing and editing of all sections in the text. L.V.S. is responsible for Fig. 1 and 4, A.W. for Fig. 5 and A.F. for Fig. 2.

Corresponding author

Correspondence to Laura V. Sales.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Yves Revaz, Jesús Zavala and Alyson Brooks for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sales, L.V., Wetzel, A. & Fattahi, A. Baryonic solutions and challenges for cosmological models of dwarf galaxies. Nat Astron 6, 897–910 (2022). https://doi.org/10.1038/s41550-022-01689-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01689-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing