Skip to main content

Advertisement

Log in

Energy harvesting maximization for multiuser MIMO SWIPT systems with intelligent reflecting surfaces

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper studies the harvested energy maximization in an intelligent reflecting surface (IRS) aided multiuser multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer (SWIPT) system in which the users can exploit power-splitting (PS) techniques for information decoding and energy harvesting (EH) simultaneously. A design problem is mathematically formulated as a joint optimization problem of transmit precoding (TPC) matrices at the base station (BS), the phase shifts at the IRS, and EH PS factors at the users to maximize the total harvested energy at the users while guaranteeing the quality of service requirements in terms of minimum achievable user rates and minimum harvested energy at each user. Considering the nonlinear EH models of the practical EH circuits at the users and unit-modulus constraints of the IRS phase shifters, the design problem becomes a highly nonlinear and non-convex optimization problem of the coupled matrix variables. To tackle the mathematical challenges in seeking the optimal solutions, we adopt alternating optimization to decompose the original design problem into two subproblems. The first subproblem is to jointly determine the TPC matrices at the BS and PS factors at the users while the second subproblem is to obtain the phase shifts at the IRS. Since each subproblem is still a non-convex optimization problem, we employ the minorization-maximization method to devise lower bound concave functions for the nonlinear EH and user rate functions and find the appropriate convex inner sets of the feasible sets to transform the optimization problems into convex ones. Verified by simulation results that the convergence of the proposed iterative algorithm is guaranteed and the total harvested energy is significantly improved as the multiuser MIMO SWIPT system is aided by the IRS with optimal phase shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open Journal of the Communications Society, 1, 957–975. https://doi.org/10.1109/OJCOMS.2020.3010270.

    Article  Google Scholar 

  2. Saad, W., Bennis, M., & Chen, M. (2020). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134–142. https://doi.org/10.1109/MNET.001.1900287.

    Article  Google Scholar 

  3. Zargari, S., Khalili, A., Wu, Q., Robat Mili, M., & Ng, D. W. K. (2021). (Early Access)) Max-min fair energy-efficient beamforming design for intelligent reflecting surface-aided SWIPT systems with non-linear energy harvesting model. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2021.3077477

    Article  Google Scholar 

  4. Wu, Q., & Zhang, R. (2020). Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Communications Magazine, 58(1), 106–112. https://doi.org/10.1109/MCOM.001.1900107

    Article  Google Scholar 

  5. Pan, C., Ren, H., Wang, K., Elkashlan, M., Nallanathan, A., Wang, J., & Hanzo, L. (2020). Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 38(8), 1719–1734. https://doi.org/10.1109/JSAC.2020.3000802

    Article  Google Scholar 

  6. Yan, W., Yuan, X., & Kuai, X. (2020). Passive beamforming and information transfer via large intelligent surface. IEEE Wireless Communications Letters, 9(4), 533–537. https://doi.org/10.1109/LWC.2019.2961670

    Article  Google Scholar 

  7. Yu, X., Xu, D., Ng, DWK., & Schober, R. (2020). Power-efficient resource allocation for multiuser MISO systems via intelligent reflecting surfaces. In: GLOBECOM 2020–2020 IEEE global communications conference, pp 1–6, https://doi.org/10.1109/GLOBECOM42002.2020.9348054

  8. Park, J., & Clerckx, B. (2014). Joint wireless information and energy transfer in a \(k\)-user MIMO interference channel. IEEE Transactions on Wireless Communications, 13(10), 5781–5796. https://doi.org/10.1109/TWC.2014.2341233

    Article  Google Scholar 

  9. Wong, V. W. S., Schober, R., Ng, D. W. K., & Wang, L. C. (2017). Key Technoogies for 5G Wireless Systems. Cambridge University Press.

  10. Roberts, M. K., & Jayabalan, R. (2014). An area efficient and high throughput multi-rate quasi-cyclic LDPC decoder for IEEE 802.11n applications. Microelectronics Journal, 45(11), 1489–1498. https://doi.org/10.1016/j.mejo.2014.07.003

    Article  Google Scholar 

  11. Zong, Z., Feng, H., Yu, F. R., Zhao, N., Yang, T., & Hu, B. (2016). Optimal transceiver design for SWIPT in K-user MIMO interference channels. IEEE Transactions on Wireless Communications, 15(1), 430–445. https://doi.org/10.1109/TWC.2015.2474857

    Article  Google Scholar 

  12. Nguyen, X. X., & Kha, H. H. (2021). Energy-spectral efficiency trade-offs in full-duplex MU-MIMO cloud-RANs with SWIPT. Wireless Communications and Mobile Computing, 2021, 21. https://doi.org/10.1155/2021/6678792

    Article  Google Scholar 

  13. Huang, C., Zappone, A., Alexandropoulos, G. C., Debbah, M., & Yuen, C. (2019). Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Transactions on Wireless Communications, 18(8), 4157–4170. https://doi.org/10.1109/TWC.2019.2922609

    Article  Google Scholar 

  14. Pan, C., Ren, H., Wang, K., Xu, W., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Multicell MIMO communications relying on intelligent reflecting surfaces. IEEE Transactions on Wireless Communications, 19(8), 5218–5233. https://doi.org/10.1109/TWC.2020.2990766

    Article  Google Scholar 

  15. Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085. https://doi.org/10.1109/LCOMM.2015.2478460

    Article  Google Scholar 

  16. Clerckx, B., Zhang, R., Schober, R., Ng, D. W. K., Kim, D. I., & Poor, H. V. (2019). Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs. IEEE Journal on Selected Areas in Communications, 37(1), 4–33. https://doi.org/10.1109/JSAC.2018.2872615

    Article  Google Scholar 

  17. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110. https://doi.org/10.1109/MCOM.2014.6957150

    Article  Google Scholar 

  18. Chen, X., Zhang, Z., Chen, Hh., & Zhang, H. (2015). Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Communications Magazine, 53(4), 133–141. https://doi.org/10.1109/MCOM.2015.7081086

    Article  Google Scholar 

  19. Nguyen, T. V., Nguyen, V. D., da Costa, D. B., & An, B. (2020). Hybrid user pairing for spectral and energy efficiencies in multiuser MISO-NOMA networks with SWIPT. IEEE Transactions on Communications, 68(8), 4874–4890. https://doi.org/10.1109/TCOMM.2020.2994204

    Article  Google Scholar 

  20. A Beck, A. B. T., & Tetruashvili, L. (2010). A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. Journal of Global Optimization, 47(1), 29–51.

    Article  Google Scholar 

  21. Nguyen, V. D., Tuan, H. D., Duong, T. Q., Poor, H. V., & Shin, O. S. (2017). Precoder design for signal superposition in MIMO-NOMA multicell networks. IEEE Journal on Selected Areas in Communications, 35(12), 2681–2695. https://doi.org/10.1109/JSAC.2017.2726007

  22. Tuy, H. (1998). Convex analysis and global optimization. Kluwer Academic.

  23. Tam, H. H. M., Tuan, H. D., & Ngo, D. T. (2016). Successive convex quadratic programming for quality-of-service management in full-duplex MU-MIMO multicell networks. IEEE Transactions on Communications, 64(6), 2340–2353. https://doi.org/10.1109/TCOMM.2016.2550440

    Article  Google Scholar 

  24. Grant, M., Boyd, S., & Ye, Y. (2008). CVX: Matlab software for disciplined convex programming. http://cvxr.com/cvx

  25. Zhang, X. D. (2017). Matrix analysis and applications. Cambridge University Press.

  26. Zhang, L., Wang, Y., Tao, W., Jia, Z., Song, T., & Pan, C. (2020). Intelligent reflecting surface aided MIMO cognitive radio systems. IEEE Transactions on Vehicular Technology, 69(10), 11445–11457. https://doi.org/10.1109/TVT.2020.3011308

    Article  Google Scholar 

  27. Huang, K. W., & Wang, H. M. (2020). Passive beamforming for IRS aided wireless networks. IEEE Wireless Communications Letters, 9(12), 2035–2039. https://doi.org/10.1109/LWC.2020.3011596

    Article  Google Scholar 

  28. Nadeem, Q. U. A., Kammoun, A., Chaaban, A., Debbah, M., & Alouini, M. S. (2020). Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems. IEEE Transactions on Wireless Communications, 19(12), 7748–7764. https://doi.org/10.1109/TWC.2020.2986438

    Article  Google Scholar 

  29. Sun, Y., Babu, P., & Palomar, D. P. (2017). Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Transactions on Signal Processing, 65(3), 794–816. https://doi.org/10.1109/TSP.2016.2601299

    Article  Google Scholar 

  30. Bandi, A., Shankar, M. R. B., Chatzinotas, S., & Ottersten, B. (2020). A joint solution for scheduling and precoding in multiuser MISO downlink channels. IEEE Transactions on Wireless Communications, 19(1), 475–490. https://doi.org/10.1109/TWC.2019.2946161

    Article  Google Scholar 

  31. Lyu, B., Ramezani, P., Hoang, D. T., Gong, S., Yang, Z., & Jamalipour, A. (2021). Optimized energy and information relaying in self-sustainable IRS-empowered WPCN. IEEE Transactions on Communications, 69(1), 619–633. https://doi.org/10.1109/TCOMM.2020.3028875

    Article  Google Scholar 

  32. Jia, Y., Ye, C., & Cui, Y. (2020). Analysis and optimization of an intelligent reflecting surface-assisted system with interference. IEEE Transactions on Wireless Communications, 19(12), 8068–8082. https://doi.org/10.1109/TWC.2020.3019088

    Article  Google Scholar 

  33. Hehao, N., & Ni, L. (2020). Intelligent reflect surface aided secure transmission in MIMO channel with SWIPT. IEEE Access, 8, 192132–192140. https://doi.org/10.1109/ACCESS.2020.3032759

    Article  Google Scholar 

  34. Jiang, R., Xiong, K., Fan, P., Zhang, Y., & Zhong, Z. (2017). Optimal design of SWIPT systems with multiple heterogeneous users under non-linear energy harvesting model. IEEE Access, 5, 11479–11489. https://doi.org/10.1109/ACCESS.2017.2713464

    Article  Google Scholar 

  35. Yu, X., Xu, D., Sun, Y., Ng, D. W. K., & Schober, R. (2020). Robust and secure wireless communications via intelligent reflecting surfaces. IEEE Journal on Selected Areas in Communications, 38(11), 2637–2652. https://doi.org/10.1109/JSAC.2020.3007043

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of time and facilities from Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Hoang Kha.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quyet, P.V., Kha, H.H. Energy harvesting maximization for multiuser MIMO SWIPT systems with intelligent reflecting surfaces. Telecommun Syst 80, 497–511 (2022). https://doi.org/10.1007/s11235-022-00918-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00918-x

Keywords

Navigation