Skip to main content

Advertisement

Log in

The Potential of Peatlands as Nature-Based Climate Solutions

  • Carbon Cycle and Climate (K Zickfeld, J Melton and N Lovenduski Section Editors)
  • Published:
Current Climate Change Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite covering only 3% of the land surface, peatlands represent the largest terrestrial organic carbon stock on the planet and continue to act as a carbon sink. Managing ecosystems to reduce greenhouse gas (GHG) emissions and protect carbon stocks provide nature-based climate solutions that can play an important role in emission reduction strategies, particularly over the next decade. This review provides an overview of peatland management pathways that can contribute to natural climate solutions and compiles regional and global estimates for the size of potential GHG emission reductions.

Recent Findings

Degraded peatlands may account for 5% of current anthropogenic GHG emissions and therefore reducing emissions through rewetting and restoration offer substantial emission reductions. However, as a majority of peatland remains intact, particularly in boreal and subarctic regions, protection from future development is also an important peatland management pathway. Literature compilation indicates a global potential for peatland nature–based climate solutions of 1.1 to 2.6 Gt CO2e year−1 in 2030.

Summary

Peatland management can play an important role in GHG emission reductions while also providing many additional co-benefits such as biodiversity protection, reduced land subsidence, and fire-severity mitigation. Yet, climate warming will hinder the ability of peatland ecosystems to continue to act as carbon sinks indicating the importance of reducing future warming through rapid decarbonization of the economy to protect these globally significant carbon stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abel S, Couwenberg J, Dahms T, Joosten H. The database of potential paludiculture pland (DPPP) and results from Western Pomerania. Plant Divers Evol. 2013;130:219–28.

    Article  Google Scholar 

  2. Acreman MC, Fisher J, Stratford CJ, Mould DJ, Mountford DO. Hydrological science and wetland restoration: some case studies from Europe. Hydrol Earth Syst Sci. 2007;11:158–69.

    Article  CAS  Google Scholar 

  3. Anderegg WR. Gambling with the climate: how risky of a bet are natural climate solutions?  AGU Adv. 2021;2:e2021AV000490.

    Google Scholar 

  4. Anthony TL, Silver WL. Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands. Glob Chang Biol. 2021;27:5141–53.

    Article  CAS  Google Scholar 

  5. Augustin J, Couwenberg J, Minke M. Peatlands and climate. Peatlands and greenhouse gases. In: Tanneberger F, Wichtmann W, editors. Carbon credits from peatland rewetting. Climate, biodiversity, land use. Stuttgart: Schweizerbart Science Publishers; 2011. p. 13–20.

    Google Scholar 

  6. Azizan SNF, Goto Y, Doi T, Kamardan MIF, Hara H, McTaggart I, Kai T, Noborio K. Comparing GHG emissions from drained oil palm and recovering tropical peatland forests in Malaysia. Water. 2021;13:3372. https://doi.org/10.3390/w13233372.

    Article  CAS  Google Scholar 

  7. Barber QE, Parisien M-A, Whitman E, Stralberg D, Johnson CJ, St-Laurent M-H, DeLancey ER, Price DT, Arseneault D, Wang X, Flannigan MD. Potential impacts of climate change on the habitat of boreal woodland caribou. Ecosphere. 2018;9:e02471. https://doi.org/10.1002/ecs2.2472.

    Article  Google Scholar 

  8. Beer C, Zimov N, Olofsson J, Porada P, Zimov S. Protection of permafrost soils from thawing by increasing herbivore density. Sci Rep. 2020;10:4170. https://doi.org/10.1038/s41598-020-60938-y.

    Article  CAS  Google Scholar 

  9. Blok C, Eveleens B, van Winkel A. Growing media for food and quality of life in the period 2020-2050. ISHS Acta Horticulturae 1305: III International Symposium on Growing Media, Composting and Substrate Analysis. 2019. https://doi.org/10.17660/ActaHortic.2021.1305.46.

  10. Buschmann C, Röder N, Berglund K, Bergland Ö, Laerke PE, Maddison M, Mander Ü, Myllys M, Osterburg B, van den Akker JJH. Perspectives on agriculturally used drained peat soils: comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy. 2020;90:104181. https://doi.org/10.1016/j.landusepol.2019.104181.

    Article  Google Scholar 

  11. Byun E, Finkelstein SA, Cowling SA, Badiou P. Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canad. Carbon Balance Manag. 2018;13:6. https://doi.org/10.1186/s13021-018-0094-4.

    Article  CAS  Google Scholar 

  12. Campbell DI, Smith J, Goodrich JP, Wall AM, Schipper LA. Year-round growing conditions explains large CO2 sink strength in a New Zealand raised peat bog. Agric For Meteorol. 2014;192-193:59–68.

    Article  Google Scholar 

  13. Charman D, Amesbury MJ, Hinchliffe W, Hughes PDM, Mallon G, Blake WH, Daley TJ, Gallego-Sala AV, Mauquoy D. Drivers of Holocen peatland carbon accumulation across a climate gradient in northeastern North America. Quat Sci Rev. 2014;121:110–9.

    Article  Google Scholar 

  14. Coffield SR, Hermes KS, Koven CD, Goulden ML, Randerson JT. Climate-driven limits to future carbon storage in California’s wildland ecosystems. AGU. Advances. 2021;2:e2021AV000384.

    Google Scholar 

  15. Cohen-Shacham E, Walters G, Janzen C, Maginnis S (Eds.). Nature-based Solutions to address global societal challenges, IUCN: Gland, Switzerland. xiii + 97 pp 2016.

  16. Dargie GC, Lewis SL, Lawson IT, Mitchard ET, Page SE, Bocko YE, Ifo SA. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature. 2017;542(7639):86–90. https://doi.org/10.1038/nature21048.

    Article  CAS  Google Scholar 

  17. David Suzuki Foundation. Cultural and ecological value of boreal woodland caribou habitat. Vancouver: David Suzuki Foundation; 2013. 21 pp

    Google Scholar 

  18. Deshmukh CS, Julius D, Desai AR, Asyhari A, Page SE, Nardi N, Susanto AP, Nurholis N, Hendrizal M, Kurnianto S, Suardiwerianto Y, Salam YW, Agus F, Astiani D, Sabiham S, Gauci V, Evans CD. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat Geosci. 2021;14:484–90.

    Article  CAS  Google Scholar 

  19. Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, Chomba S, Dixon K, Elliott S, Ruyonga G, Shaw K, Smith P, Smith RJ, Antonelli A. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob Chang Biol. 2021;27(7):1328–48.

    Article  CAS  Google Scholar 

  20. Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja O, et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ Res Lett. 2014;9(12). https://doi.org/10.1088/1748-9326/9/12/124017.

  21. Drever CR, Cook-Patton SC, Akhter F, Badiou PH, Chmura GL, Davidson SJ, Dyk A, Fargione JE, Fellows M, Filewod B, Hessing-Lewis M, Jayasundara S, Keeton WS, Kroeger T, Lark TJ, Le E, Leavitt SM, LeClerc M-E, Lemprière TC, et al. Natural climate solutions for Canada. Science. Advances. 2021;7:eabd6034.

    CAS  Google Scholar 

  22. Evans CD, Peacock M, Baird AJ, Artz RRE, Burden A, Callaghan N, Chapman PJ, Cooper HM, Coyle M, Craig E, Cumming A, Dixon S, Gauci V, Grayson RP, Helfter C, Heppell CM, Holden J, Jones DL, Kaduk J, et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature. 2021;593(7860):548–52. https://doi.org/10.1038/s41586-021-03523-1.

    Article  CAS  Google Scholar 

  23. Evers S, Yule CM, Padfield R, O’Reilly P, Varkkey H. Keep wetlands wet: the myth of sustainable development of tropical peatlands - implications for policies and management. Glob Chang Biol. 2017;23(2):534–49. https://doi.org/10.1111/gcb.13422.

    Article  Google Scholar 

  24. Felton AM, Engström LM, Felton A, Knott CD. Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan, Indonesia. Biol Conserv. 2003;114:91–101.

    Article  Google Scholar 

  25. Fischer W, Thomas CK, Zimov N, Göckede M. Grazing enhances carbon cycling but reduces methane emission during peak growing season in the Siberian Pleistocene Park tundra site. Biogeosciences. 2022;19:1611–33.

    Article  CAS  Google Scholar 

  26. Freeman C, Lock MA, Hughes S, Reynolds B, Hudson JA. Nitrous oxide emissions and the use of wetlands for water quality amelioration. Environ Sci Technol. 1997;31(8):2438–40.

    Article  CAS  Google Scholar 

  27. Frolking S, Roulet NT. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob Chang Biol. 2007;13:1079–88.

    Article  Google Scholar 

  28. Fuss S, Canadell JG, Ciais P, Jackson RB, Jones CD, Lyngfelt A, Peters GP, Van Vuuren DP. Moving towards net-zero emissions requires new alliances for carbon dioxide removal. One Earth. 2020;3:145–9.

    Article  Google Scholar 

  29. Gann GD, McDonald T, Walder B, Aronson J, Nelson CR, Jonson J, Hallett JG, Eisenberg C, Guariguata MR, Liu J, Hua F, Echeverría C, Gonzales E, Shaw N, Decleer K, Dixon KW. International principles and standards for the practice of ecological restoration. Second edition. Restor Ecol. 2019;27:S1–S46.

    Article  Google Scholar 

  30. Granath G, Moore PA, Lukenbach MC, Waddington JM. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci Rep. 2016;6:28498. https://doi.org/10.1038/srep28498.

    Article  CAS  Google Scholar 

  31. Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shock D, Siikamäki JV, Smith P, Woodbury P, Zganjar C, Blackman A, Campari J, Conant RT, Delgado C, Elias P, Gopalakrishna T, Hamsik MR, et al. Natural climate solutions. PNAS. 2017;114:11645–50.

    Article  CAS  Google Scholar 

  32. Groom B, Palmer C, Sileci L. Carbon emissions reductions from Indonesia’s moratorium on forest concessions are cost-effective yet contribute little to Paris pledges. PNAS. 2022;119:e2102613119.

    Article  CAS  Google Scholar 

  33. Gumbricht T, Roman-Cuesta RM, Verchot L, Herold M, Wittmann F, Householder E, ... Murdiyarso D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol. 2017;23(9):3581-3599. https://doi.org/10.1111/gcb.13689

    Article  Google Scholar 

  34. Günther A, Huth V, Jurasinski G, Glatzel S. The effect of biomass harvesting on greenhouse gas emissions from a rewetted temperate fen. Glob Chang Biol Bioenergy. 2014;7:1092–106.

    Article  CAS  Google Scholar 

  35. Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, Couwenberg J. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644. https://doi.org/10.1038/s41467-020-15499-z.

    Article  CAS  Google Scholar 

  36. Harris LI, Richardson K, Bona KA, Davidson SJ, Finkelstein S, Garneau M, McLaughlin J, Nwaishi F, Olefeldt D, Packalen M, Roulet NT, Southee M, Strack M, Webster K, Wilkinson SL, Ray J. The essential carbon service provided by northern peatlands. Front Ecol Environ. 2021. https://doi.org/10.1002/fee.2437.

  37. Harrison ME, Ottay JB, D’Arcy LJ, Cheyne SM, Anggodo, Belcher C, et al. Tropical forest and peatland conservation in Indonesia: challenges and directions. People Nat. 2019;2(1):4–28. https://doi.org/10.1002/pan3.10060.

    Article  Google Scholar 

  38. He H, Moore T, Humphreys E, Lafleur PM, Roulet NT. Water level variation at beaver pond significantly impacts net CO2 uptake of a continental bog. Hydrol Earth Syst Sci Discuss. 2021. https://doi.org/10.5194/hess-2021-585.

  39. Helbig M, Waddington JM, Alekseychik P, Amiro B, Aurela M, Barr AG, Black TA, Carey SK, Chen J, Chi J, Desai AR, Dunn A, Euskirchen ES, Flanagan LB, Friborg T, Garneau M, Grelle A, Harder S, Heliasz M, et al. The biophysical climate mitigation potential of boreal peatlands during the growing season. Environ Res Lett. 2020;15:104004. https://doi.org/10.1008/1748-9326/abab34.

    Article  Google Scholar 

  40. Hirano T, Kusin K, Limin S, Osaki M. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Glob Chang Biol. 2014;20(2):555–65. https://doi.org/10.1111/gcb.12296.

    Article  Google Scholar 

  41. Hirano T, Sundari S, Yamada H. CO2 balance of tropical peat ecosystems. In: Osaki M, Tsuji N, editors. Tropical Peatland Ecosystems. Tokyo: Springer; 2016. p. 329–37.

    Chapter  Google Scholar 

  42. Hodgkins SB, Richardson CJ, Dommain R, Wang H, Glaser PH, Verbeke B, ... Chanton JP. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat Commun. 2018;9(1):3640. https://doi.org/10.1038/s41467-018-06050-2

    Article  CAS  Google Scholar 

  43. Hu J, VanZomeren CM, Inglett KS, Wright AL, Clark MW, Reddy KR. Greenhouse gas emissions under different drainage and flooding regimes in cultivated peatlands. J Geophys Res Biogeosci. 2017;122:3047–62.

    Article  CAS  Google Scholar 

  44. Hu Y, Fernandez-Anez N, Smith TEL, Rein G. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int J Wildland Fire. 2018;27:293–312.

    Article  CAS  Google Scholar 

  45. Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, MacDonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C, Yu Z. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. PNAS. 2020;117(34):20438–46.

    Article  CAS  Google Scholar 

  46. Huijnen V, Wooster MJ, Kaiser JW, Gaveau DL, Flemming J, Parrington M, ... van Weele M. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci Rep. 2016;6:26886. https://doi.org/10.1038/srep26886.

    Article  CAS  Google Scholar 

  47. Huth V, Günther A, Bartel A, Gutekunst C, Heinze S, Hofer B, Jacobs O, Koebsch F, Rosinski E, Tonn C, Ullrich K, Jurasinski G. The climate benefits of topsoil removal and Sphagnum introduction in raised bog restoration. Restor Ecol. 2021. https://doi.org/10.1111/rec.13490.

  48. IPCC. Climate change 2013: the physical science basis. Cambridge: Cambridge University Press; 2013.

    Google Scholar 

  49. Ise T, Dunn AL, Wofsy SC, Moorcroft PR. High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci. 2008;1:763–7.

    Article  CAS  Google Scholar 

  50. Ishikura K, Hirata R, Hirano T, Okimoto Y, Wong GX, Melling L, Aeries EB, Kiew F, Lo KS, Musin KK, Waili JW, Ishii Y. Carbon dioxide and methane emissions from peat soil in an undrained tropical peat swamp forest. Ecosystems. 2019;22(8):1852–68. https://doi.org/10.1007/s10021-019-00376-8.

    Article  CAS  Google Scholar 

  51. IUCN. Peatlands and climate change, Issues Brief. 2021. Available: https://www.iucn.org/resources/issues-briefs/peatlands-and-climate-change.

  52. IUCN Peatland Programme. IUCN UK Peatland Strategy 2018-2040. 2018.

  53. Jarveoja J, Peichl M, Maddison M, Soosaar K, Vellak K, Karofeld E, Teemusk A, Mander U. Impact of water table level on annual carbon and greenhouse gas balances of a restored peat extraction area. Biogeosciences. 2016;13:2637–51.

    Article  CAS  Google Scholar 

  54. Joosten H. The Global Peatland CO2 Picture: peatland status and drainage related emissions in all countries of the world. Wetlands International: Ede; 2010.

    Google Scholar 

  55. Juutinen A, Tolvanen A, Saarimaa M, Ojanen P, Sarkkola S, Ahtikoski A, Haikarainen S, Karhu J, Haara A, Nieminen M, Pentillä T, Nousiainen H, Hotanen J-P, Minkkinen K, Kurttila M, Heikkinen K, Sallantaus T, Aapala K, Tuominen S. Cost-effective land-use options of drained peatlands– integrated biophysical-economic modeling approach. Ecol Econ. 2020;175:106704. https://doi.org/10.1016/j.ecolecon.2020.106704.

    Article  Google Scholar 

  56. Karki S, Elsgaard L, Audet J, Laerke PE. Mitigation of greenhouse gas emissions from reed canary grass in paludiculture: effect of groundwater level. Plant Soil. 2014;383:217–30.

    Article  CAS  Google Scholar 

  57. Karran D, Westbrook CJ, Bedard-Haughn A. Beaver-mediated water table dynamics in a Rocky Mountain fen. Ecohydrology. 2018;11:e1923. https://doi.org/10.1002/eco.1923.

    Article  Google Scholar 

  58. Kayranli B, Scholz M, Mustafa A, Hedmark A. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands. 2010;30:111–24.

    Article  Google Scholar 

  59. Kettridge N, Lukenbach MC, Hokanson KJ, Hopkinson C, Devito KJ, Petrone RM, Mendoza CA, Waddington JM. Low evapotranspiration enhances resilience of peatland carbon stocks to fire. Geophys Res Lett. 2017;44:9341–9.

    Article  CAS  Google Scholar 

  60. Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D. Agricultural peatland restoration: effect of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Glob Chang Biol. 2015;21:750–65.

    Article  Google Scholar 

  61. Lai DYF. Methane dynamics in northern peatlands: a review. Pedosphere. 2009;19:409–21.

    Article  CAS  Google Scholar 

  62. Leifeld J, Menichetti L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat Commun. 2018;9(1):1071. https://doi.org/10.1038/s41467-018-03406-6.

    Article  CAS  Google Scholar 

  63. Lestari I, Murdiyarso D, Taufik M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province, Indonesia. Forests. 2022;13:505. https://doi.org/10.3390/f13040505.

    Article  Google Scholar 

  64. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G. Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences. 2008;5:1475–91.

    Article  CAS  Google Scholar 

  65. Loisel J, Gallego-Sala A, Amesbury MJ, Magnan G, Anshari G, Beilman DW, Benavides JC, Blewett J, Camill P, Charman DJ, Chawchai S, Hedgpeth A, Kleinen T, Korhola A, Large D, Mansilla CA, Müller J, van Bellen S, West JB, et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat Clim Chang. 2020;11:70–7.

    Article  Google Scholar 

  66. Minke M, Freibauer A, Yarmashuk T, Burlo A, Harbachova H, Schneider A, Tikhonov V, Augustin J. Flooding of an abandoned fen by beaver led to highly variable greenhouse gas emissions. Mires Peat. 2020;26:23. https://doi.org/10.19189/MaP.2019.SNPG.StA.1808.

    Article  Google Scholar 

  67. Mishra S, Page SE, Cobb AR, Lee JSH, Jovani-Sancho AJ, Sjögersten S, Jaya A, Aswandi W, D. A. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J Appl Ecol. 2021;58(7):1370–87. https://doi.org/10.1111/1365-2664.13905.

    Article  CAS  Google Scholar 

  68. Moomaw WR, Chmura G, Davies GT, Finlayson CM, Middleton BA, Natali SM, Perry JE, Roulet N, Sutton-Grier AE. Wetlands in a changing climate: science, policy and management. Wetlands. 2018;38:183–205.

    Article  Google Scholar 

  69. Müller J, Joos F. Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation. Biogeosciences. 2020;17:5285–308.

    Article  CAS  Google Scholar 

  70. Nichols JE, Peteet DM. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat Geosci. 2019;12:917–21.

    Article  CAS  Google Scholar 

  71. Nugent KA, Strachan IB, Strack M, Roulet NT, Rochefort L. Multi-year ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob Chang Biol. 2018;24:5751–68.

    Article  Google Scholar 

  72. Nugent KA, Strachan IB, Roulet NT, Strack M, Frolking S, Helbig M. Prompt active restoration of peatlands substantially reduces climate impact. Environ Res Lett. 2019;14:124030. https://doi.org/10.1088/1748-9326/ab56e6.

    Article  CAS  Google Scholar 

  73. O’Connell CA, Madigan N, Whyte T, Farrell P. Peatlands and Climate Change Action Plan 2030. Kildare: Irish Peatland Conservation Council, Co.; 2021.

    Google Scholar 

  74. Page SE, Baird AJ. Peatland and global change: response and resilience. Annu Rev Environ Resour. 2016;41:35–57.

    Article  Google Scholar 

  75. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 2002;420:61–5.

    Article  CAS  Google Scholar 

  76. Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol. 2011;17(2):798–818. https://doi.org/10.1111/j.1365-2486.2010.02279.x.

    Article  Google Scholar 

  77. Qiu C, Zhu D, Ciais P, Guenet B, Peng S. The role of northern peatland in the global carbon cycle for the 21st century. Glob Ecol Biogeogr. 2020;29:956–73.

    Article  Google Scholar 

  78. Renou-Wilson F. Peatlands. In: Creamer R, O’Sullivan L, editors. The soils of Ireland, World Soils Book Series. Cham: Springer; 2018. p. 141–52.

    Google Scholar 

  79. Renou-Wilson F, Müller C, Moser G, Wilson D. To graze or not to graze? Four years greenhouse gas balances and vegetation composition from a drained and a rewetted organic soil under grassland. Agric Ecosyst Environ. 2016;222:156–70.

    Article  Google Scholar 

  80. Renou-Wilson F, Moser G, Fallon D, Farrell CA, Müller C, Wilson D. Rewetting degraded peatlands for climate and biodiversity benefits: results from two raised bogs. Ecol Eng. 2019;127:547–60.

    Article  Google Scholar 

  81. Ribeiro, K., Pacheco, F. S., Ferreira, J. W., de Sousa-Neto, E. R., Hastie, A., Krieger Filho, G. C., . . . Ometto, J. P. (2021). Tropical peatlands and their contribution to the global carbon cycle and climate change. Glob Chang Biol, 27(3), 489-505. https://doi.org/10.1111/gcb.15408.

    Article  Google Scholar 

  82. Ritson JP, Bell M, Brazier RE, Grand-Clement E, Graham NJD, Freeman C, Smith D, Templeton MR, Clark JM. Managing peatland vegetation for drinking water treatment. Sci Rep. 2016;6:36751. https://doi.org/10.1038/srep36751.

    Article  CAS  Google Scholar 

  83. Saraswati S, Strack M. Road crossings increase methane emissions from adjacent peatland. J Geophys Res Biogeosci. 2019;124:3588–99.

    Article  CAS  Google Scholar 

  84. Seddon N, Chausson A, Berry P, Girardin CAJ, Smith A, Turner B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos Trans R Soc B. 2020;375:20190120. https://doi.org/10.1098/rstb.2019.0120.

    Article  Google Scholar 

  85. Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry. 1998;41:23–51.

    Article  CAS  Google Scholar 

  86. Tan ZD, Lupascu M, Wijedasa LS. Paludiculture as a sustainable land use alternative for tropical peatlands: a review. Sci Total Environ. 2021;753:142111. https://doi.org/10.1016/j.scitotenv.2020.142111.

    Article  CAS  Google Scholar 

  87. Taufik M, Tri Widyastuti M, Sulaiman A, Murdiyarso D, Santikayasa IP, Minasny B. An improved drought-fire assessment for managing fire risks in tropical peatlands. Agric For Meteorol. 2022;312:108738. https://doi.org/10.1016/j.agrformet.2021.108738.

    Article  Google Scholar 

  88. Turetsky MR, Benscoter B, Page S, Rein G, van der Werf GR, Watts A. Global vulnerability of peatlands to fire and carbon loss. Nat Geosci. 2015;8:11–4.

    Article  CAS  Google Scholar 

  89. UNEP (United Nations Environment Programme). New peatland coalition targets cutting climate change, saving thousands of lives. 2016. Available: https://unfccc.int/files/meetings/marrakech_nov_2016/application/pdf/unep_peatland_release_en.pdf.

  90. Van Noordwijk M, Matthews R, Agus F, Farmer J, Verchot L, Hergoualc’h K, Persch S, Lestari Tata H, Lusiana B, Widayati A, Dewi S. Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation. Mitig Adapt Strateg Glob Chang. 2014;19:887–905.

    Article  Google Scholar 

  91. Vasander H, Kettunen A. Carbon in boreal peatlands. In: Wieder RK, Vitt DH, editors. Boreal peatland ecosystems. Ecological studies (analysis and synthesis), vol 188. Berlin: Springer; 2006. p. 165–94.

    Chapter  Google Scholar 

  92. Verwer C, van der Meer PJ. Carbon pools in tropical peat forestd - towards a reference value for forest biomass carbon in relatively undisturbed peat swamp forest in Southeast Asia. 2010. Retrieved from.

  93. Waddington JM, Warner KD, Kennedy GW. Cutover peatlands: a persistent source of atmospheric CO2. Glob Biogeochem Cycles. 2002;16:1002. https://doi.org/10.1029/2001GB001398.

    Article  Google Scholar 

  94. Wakhid N, Hirano T, Okimoto Y, Nurzakiah S, Nursyamsi D. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Sci Total Environ. 2017;581:857–65. https://doi.org/10.1016/j.scitotenv.2017.01.035.

    Article  CAS  Google Scholar 

  95. Warren M, Hergoualc’h K, Kauffman JB, Murdiyarso D, Kolka R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag. 2017;12(1):12. https://doi.org/10.1186/s13021-017-0080-2.

    Article  CAS  Google Scholar 

  96. Wichtmann W, Schröder C, Joosten H, editors. Paludiculture - productive use of wet peatlands. Stuttgart: Schwizerbart Science Publishers; 2016.

    Google Scholar 

  97. Wilkinson SL, Moore PA, Thompson DK, Wotton BM, Hvenegaard S, Schroeder D, Waddington JM. The effects of black spruce fuel management on surface fuel condition and peat burn severity in an experimental fire. Can J For Res. 2018;48:1433–40.

    Article  CAS  Google Scholar 

  98. Wilson D, Farrell CA, Fallon D, Moser G, Müller C, Renou-Wilson F. Multiyear greenhoue gas balances at a rewetted temperate peatland. Glob Chang Biol. 2016;22:4080–95.

    Article  Google Scholar 

  99. Wong GX, Hirata R, Hirano T, Kiew F, Aeries EB, Musin KK, Waili JW, Los KS, Melling L. How do land use practices affect methane emissions from tropical peat ecosystems? Agric For Meteorol. 2020;282-283:107869. https://doi.org/10.1016/j.agrformet.2019.107869.

    Article  Google Scholar 

  100. Worrall F, Boothroyd IM, Howden NJK, Burt TP, Kohler T, Gregg R. Are peatlands cool humid islands in a landscape? Hydrol Process. 2020;34:5013–25.

    Article  Google Scholar 

  101. Yu Z, Loisel J, Brosseau DP, Beilman DW, Hunt SJ. Global peatland dynamics since the Last Glacial Maximum. Geophys Res Lett. 2010;37:L13402. https://doi.org/10.1029/2010GL043584.

    Article  CAS  Google Scholar 

  102. Yuwati TW, Rachmanadi D, Qirom MA, Santosa PB, Halwany W, Hakim S, Alimah D. The performance of paludiculture commodities at different peat depths on Central Kalimantan. IOP Conf Ser Earth Environ Sci. 2021;914:012047. https://doi.org/10.1088/1755-1315/914.012047.

    Article  Google Scholar 

  103. Ziegler R, Wichtmann W, Abel S, Kemp R, Simard M, Joosten H. Wet peatland utilisation for climate protection - an international survey of paludiculture innovation. Clean Eng Technol. 2021;5:100305. https://doi.org/10.1016/j.clet.2021.100305.

    Article  Google Scholar 

Download references

Acknowledgements

Indigenous peoples around the world play critical roles in peatland stewardship. We acknowledge that much of this paper was written at the University of Waterloo situated on the traditional and unceded territory of the Attawandaron, Anishinaabeg, and Haudenosaunee peoples. We thank Nataša Popović for help with the creation of Fig. 1. Comments from the handling editor, J. Melton, and 2 anonymous reviewers improved the manuscript.

Funding

MS in a Natural Sciences and Engineering Research Council (NSERC) Canada Research Chair with this work also supported by an NSERC Discovery Grant. TH was supported by JSPS KAKENHI Grant Number 19H05666.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Strack.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Carbon Cycle and Climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strack, M., Davidson, S.J., Hirano, T. et al. The Potential of Peatlands as Nature-Based Climate Solutions. Curr Clim Change Rep 8, 71–82 (2022). https://doi.org/10.1007/s40641-022-00183-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40641-022-00183-9

Keywords

Navigation