Skip to main content

Advertisement

Log in

Remediation of Mercury-Polluted Farmland Soils: A Review

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Mercury (Hg) bioaccumulation in Hg-polluted farmlands poses high health risk for humans and wildlife, and remediation work is urgently needed. Here, we first summarize some specific findings related to the environmental process of Hg in Hg-polluted farmlands, and distinguish the main achievements and deficiencies of available remediation strategies in recent studies. Results demonstrate that farmland is a sensitive area with vibrant Hg biogeochemistry. Current remediation methods are relatively hysteretic whether in mechanism understanding or field application, and deficient for large-scale Hg-polluted farmlands in view of safety, efficiency, sustainability, and cost-effectiveness. New perspectives including environment-friendly functional materials, assisted phytoremediation and agronomic regulations are worthy of further study as their key roles in reducing Hg exposure risk and protecting agricultural sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeysinghe KS, Qiu GL, Goodale E, Anderson CWN, Bishop K, Evers DC, Goodale MW, Hintelmann H, Liu SJ, Mammides C, Quan RC, Wang J, Wu PP, Xu XH, Yang XD, Feng XB (2017) Mercury flow through an Asian rice-based food web. Environ Pollut 229:219–228

    Article  CAS  Google Scholar 

  • Chen R, Zhang CB, Zhao YL, Huang YC, Liu ZQ (2018) Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollut Res Int 25(3):2361–2368

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2015) Bioremediation of inorganic mercury through volatilization and biosorption by transgenic Bacillus cereus BW-03(pPW-05). Int Biodeter Biodegr 103:179–185

    Article  CAS  Google Scholar 

  • Evangelou MW, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6):989–1003

    Article  CAS  Google Scholar 

  • Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G (2017) Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J Soil Sediment 17(5):1224–1236

    Article  CAS  Google Scholar 

  • Francois F, Lombard C, Guigner JM, Soreau P, Brian-Jaisson F, Martino G, Vandervennet M, Garcia D, Molinier AL, Pignol D, Peduzzi J, Zirah S, Rebuffat S (2012) Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl Environ Microb 78(4):1097–1106

    Article  CAS  Google Scholar 

  • Gong YY, Liu YY, Xiong Z, Kaback D, Zhao DY (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23(29):294007

    Article  Google Scholar 

  • Gong YY, Zhao DY, Wang QL (2018) An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Res 147:440–460

    Article  CAS  Google Scholar 

  • Gong YY, Huang Y, Wang MX, Liu FF, Zhang T (2019) Application of iron-based materials for remediation of mercury in water and soil. Bull Environ Contam Toxicol 102:721–729

    Article  CAS  Google Scholar 

  • Haque S, Zeyaullah M, Nabi G, Srivastava PS, Ali A (2010) Transgenic tobacco plant expressing environmental E. coli merA gene for enhanced volatilization of ionic mercury. J Microbiol Biotechnol 20(5):917–924

    Article  Google Scholar 

  • He M, Tian L, Braaten HFV, Wu QR, Luo J, Cai LM, Meng JH, Lin Y (2019) Mercury-organic matter interactions in soils and sediments: angel or devil? B Environ Contam Tox 102(5):621–627

    Article  CAS  Google Scholar 

  • Huang Y, Wang L, Wang W, Li T, He Z, Yang X (2019) Current status of agricultural soil pollution by heavy metals in China: a meta-analysis. Sci Total Environ 651(Pt 2):3034–3042

    Article  CAS  Google Scholar 

  • Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res 125:160–170

    Article  CAS  Google Scholar 

  • Krisnayanti BD, Anderson CWN, Utomo WH, Feng XB, Handayanto E, Mudarisna N, Ikram H, Khususiah (2012) Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. J Environ Monitor 14(10):2598–2607

    Article  CAS  Google Scholar 

  • Kumari S, Jamwal R, Mishra N, Singh DK (2020) Recent developments in environmental mercury bioremediation and its toxicity: a review. Environ Nanotechnol Monit Manag 13:100283

    Google Scholar 

  • Li P, Feng X, Qiu G (2010) Methylmercury exposure and health effects from rice and fish consumption: a review. Int J Environ Res Public Health 7(6):2666–2691

    Article  CAS  Google Scholar 

  • Li X, Zhang J, Gong Y, Yang S, Ye M, Yu X, Ma J (2020a) Status of mercury accumulation in agricultural soils across China (1976–2016). Ecotoxicol Environ Saf 197:110564

    Article  CAS  Google Scholar 

  • Li R, Wu H, Ding J, Li N, Fu WM, Gan LJ, Li Y (2020b) Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil. Plant Cell Rep 39(10):1369–1380

    Article  CAS  Google Scholar 

  • Liu Z, Tran KQ (2021) A review on disposal and utilization of phytoremediation plants containing heavy metals. Ecotoxicol Environ Saf 226:112821

    Article  CAS  Google Scholar 

  • Liu LW, Li W, Song WP, Guo MX (2018) Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Liu Z, Chen B, Wang LA, Urbanovich O, Nagorskaya L, Li X, Tang L (2020) A review on phytoremediation of mercury contaminated soils. J Hazard Mater 400:123138

    Article  CAS  Google Scholar 

  • Liu YW, Liu GL, Wang ZW, Guo YY, Yin YG, Zhang XS, Cai Y, Jiang GB (2021) Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges. Crit Rev Env Sci Tec

  • Makarova AS, Nikulina E, Fedotov P (2021) Induced phytoextraction of mercury. Sep Purif Rev 51:174–194

    Article  Google Scholar 

  • Marrugo-Negrete J, Durango-Hernandez J, Pinedo-Hernandez J, Olivero-Verbel J, Diez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63

    Article  CAS  Google Scholar 

  • Mello IS, Targanski S, Pietro-Souza W, Frutuoso Stachack FF, Terezo AJ, Soares MA (2020) Endophytic bacteria stimulate mercury phytoremediation by modulating its bioaccumulation and volatilization. Ecotoxicol Environ Saf 202:110818

    Article  CAS  Google Scholar 

  • Natasha, Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C (2020) A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Sci Total Environ 711:134749

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232

    Article  CAS  Google Scholar 

  • O’Brien PL, DeSutter TM, Casey FXM, Khan E, Wick AF (2018) Thermal remediation alters soil properties: a review. J Environ Manage 206:826–835

    Article  CAS  Google Scholar 

  • O’Connor D, Peng TY, Li GH, Wang SX, Duan L, Mulder J, Cornelissen G, Cheng ZL, Yang SM, Hou DY (2018) Sulfur-modified rice husk biochar: a green method for the remediation of mercury contaminated soil. Sci Total Environ 621:819–826

    Article  CAS  Google Scholar 

  • Ottesen RT, Birke M, Finne TE, Locutura M, Reimann C, Tarvainen T, Team GP (2013) Mercury in European agricultural and grazing land soils. Appl Geochem 33:1–12

    Article  CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang LY (2013) The genetic basis for bacterial bercury bethylation. Science 339:1332–1335

    Article  CAS  Google Scholar 

  • Pogrzeba M, Ciszek D, Galimska-Stypa R, Nowak B, Sas-Nowosielska A (2016) Ecological strategy for soil contaminated with mercury. Plant Soil 409(1):371–387

    Article  CAS  Google Scholar 

  • Qian XL, Wu YG, Zhou HY, Xu XH, Xu ZD, Shang LH, Qiu GL (2018) Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Environ Pollut 239:757–767

    Article  CAS  Google Scholar 

  • Qiu GL, Feng XB, Wang SF, Shang LH (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem 20(3):627–638

    Article  CAS  Google Scholar 

  • Rothenberg SE, Feng XB, Zhou WJ, Tu M, Jin BW, You JM (2012) Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou, China. Sci Total Environ 426(2):272–280

    Article  CAS  Google Scholar 

  • Rothenberg SE, Anders M, Ajami NJ, Petrosino JF, Balogh E (2016) Water management impacts rice methylmercury and the soil microbiome. Sci Total Environ 572:608–617

    Article  CAS  Google Scholar 

  • Sahinkaya E, Uçar D, Kaksonen AH (2017) Bioprecipitation of metals and metalloids. Springer, In Sustainable heavy metal remediation, pp 199–231

    Google Scholar 

  • Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Malkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137(1–3):101–109

    Article  CAS  Google Scholar 

  • Semenov MV, Krasnov GS, Semenov VM, Ksenofontova N, Zinyakova NB, van Bruggen A (2021) Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota? J Environ Manage 294:113018

    Article  Google Scholar 

  • Shen ZM, Zhang JD, Qu LY, Dong ZQ, Zheng SS, Wang WH (2009) A modified EK method with an I-/I-2 lixiviant assisted and approaching cathodes to remedy mercury contaminated field soils. Environ Geol 57(6):1399–1407

    Article  CAS  Google Scholar 

  • Sun T, Ma M, Du H, Wang X, Zhang Y, Wang Y, Wang D (2019) Effect of different rotation systems on mercury methylation in paddy fields. Ecotoxicol Environ Saf 182:109403

    Article  CAS  Google Scholar 

  • Sun WJ, Cheng K, Sun KY, Ma XM (2021) Microbially mediated remediation of contaminated sediments by heavy metals: a critical review. Curr Pollut Rep 7(2):201–212

    Article  CAS  Google Scholar 

  • Tang WL, Dang F, Evans D, Zhong H, Xiao L (2017) Understanding reduced inorganic mercury accumulation in rice following selenium application: selenium application routes, speciation and doses. Chemosphere 169:369–376

    Article  CAS  Google Scholar 

  • Tang ZY, Fan FL, Deng SP, Wang DY (2020) Mercury in rice paddy fields and how does some agricultural activities affect the translocation and transformation of mercury: a critical review. Ecotoxicol Environ Saf 202:110950

    Article  CAS  Google Scholar 

  • Tian X (2021) Effects of straw, cow dung and its composting products on soil DOM characteristics and bio-mercury enrichment in paddy. (in Chinese with Eglish abstract). Guizhou university

  • Tiodar ED, Vacar CL, Podar D (2021) Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: challenges and perspectives. Int J Environ Res Public Health 18(5):2435

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (2018) Global Mercury Assessment 2018. Switzerland, Geneva

    Google Scholar 

  • Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5(4):464–485

    Article  Google Scholar 

  • Virkutyt J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation-critical overview. Sci Total Environ 289(1–3):97–121

    Article  Google Scholar 

  • Wang ZB, He TR (2019) Effect of different selenization remediation agents on remediation of mercury pollution in paddyfields. (Chinese with English abstract). China Environ Sci 39(10):4254–4261

    CAS  Google Scholar 

  • Wang YD, Stauffer C, Keller C, Greger M (2005) Changes in Hg fractionation in soil induced by willow. Plant Soil 275(1):67–75

    Article  CAS  Google Scholar 

  • Wang JX, Feng XB, Anderson CW, Xing Y, Shang LH (2012) Remediation of mercury contaminated sites: a review. J Hazard Mater 221–222:1–18

    Google Scholar 

  • Wang T, Sun HW, Mao HJ, Zhang YF, Wang CP, Zhang ZY, Wang BL, Sun L (2014) The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community. J Hazard Mater 278:483–490

    Article  CAS  Google Scholar 

  • Wang SQ, Zhong TY, Chen DM, Zhang XY (2016) Spatial distribution of mercury (Hg) concentration in agricultural soil and its risk assessment on food safety in China. Sustainability 8(8):795

    Article  Google Scholar 

  • Wang XN, Zhang DY, Pan XL, Lee DJ, Al-Misned FA, Mortuza MG, Gadd GM (2017a) Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170:266–273

    Article  CAS  Google Scholar 

  • Wang JX, Xia JC, Feng XB (2017b) Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction. J Environ Manage 186(Pt 2):233–239

    Article  CAS  Google Scholar 

  • Wang YM, Yang RX, Zheng JY, Shen ZG, Xu XM (2019a) Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol Environ Saf 167:10–19

    Article  CAS  Google Scholar 

  • Wang JX, Xing Y, Xie YY, Meng Y, Xia JC, Feng XB (2019b) The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Sci Total Environ 646:1615–1623

    Article  CAS  Google Scholar 

  • Wang YN, O’Connor D, Shen ZT, Lo IMC, Tsang DCW, Pehkonen S, Pu SY, Hou DY (2019c) Green synthesis of nanoparticles for the remediation of contaminated waters and soils: constituents, synthesizing methods, and influencing factors. J Clean Prod 226:540–549

    Article  CAS  Google Scholar 

  • Wang JX, Shaheen SM, Anderson CWN, Xing Y, Liu SR, Xia JC, Feng XB, Rinklebe J (2020a) Nanoactivated carbon reduces mercury mobility and uptake by Oryza sativa L.: mechanistic investigation using spectroscopic and microscopic techniques. Environ Sci Technol 54(5):2698–2706

    Article  CAS  Google Scholar 

  • Wang Y, He TR, Yin DL, Han YX, Zhou X, Zhang G, Tian X (2020b) Modified clay mineral: a method for the remediation of the mercury-polluted paddy soil. Ecotoxicol Environ Saf 204:111121

    Article  CAS  Google Scholar 

  • Wang YJ, Zhang Y, Ok YS, Jiang T, Liu P, Shu R, Wang DY, Cao XD, Zhong H (2021) Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions. J Hazard Mater 407

  • Xia JC, Wang JX, Zhang LM, Anderson CWN, Wang X, Zhang H, Dai ZH, Feng XB (2020) Screening of native low mercury accumulation crops in a mercury - polluted mining region: agricultural planning to manage mercury risk in farming communities. J Clean Prod 262:121324

    Article  CAS  Google Scholar 

  • Xing Y, Wang JX, Xia JC, Liu ZM, Zhang YH, Du Y, Wei WL (2019) A pilot study on using biochars as sustainable amendments to inhibit rice uptake of Hg from a historically polluted soil in a Karst region of China. Ecotox Environ Safe 170:18–24

    Article  CAS  Google Scholar 

  • Xu J, Bravo AG, Lagerkvist A, Bertilsson S, Sjoblom R, Kumpiene J (2015) Sources and remediation techniques for mercury contaminated soil. Environ Int 74:42–53

    Article  CAS  Google Scholar 

  • Xu XH, Yan M, Liang LC, Lu QH, Han JL, Liu L, Feng XB, Guo JY, Wang YJ, Qiu GL (2019) Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environ Pollut 249:647–654

    Article  CAS  Google Scholar 

  • Yang Q, Wang YJ, Zhong H (2021) Remediation of mercury-contaminated soils and sediments using biochar: a critical review. Biochar 3:1–13

    Article  CAS  Google Scholar 

  • Ye SJ, Zeng GM, Wu HP, Zhang C, Dai J, Liang J, Yu JF, Ren XY, Yi H, Cheng M, Zhang C (2017) Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol 37(8):1062–1076

    Article  CAS  Google Scholar 

  • Yin DL, He TR, Zeng LX, Chen J (2016) Exploration of amendments and agronomic measures on the remediation of methylmercury-polluted rice in a mercury mining area. Water Air Soil Poll 227(9):333

    Article  Google Scholar 

  • Yin DL, He TR, Yin RS, Zeng LX (2018) Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China. J Environ Sci 68:194–205

    Article  CAS  Google Scholar 

  • Zeb A, Li S, Wu J, Lian J, Liu W, Sun Y (2020) Insights into the mechanisms underlying the remediation potential of earthworms in contaminated soil: a critical review of research progress and prospects. Sci Total Environ 740:140145

    Article  CAS  Google Scholar 

  • Zhang SQ, Wang MX, Liu J, Tian SY, Yang XL, Xiao GQ, Xu GM, Jiang T, Wang DY (2022), Biochar affects methylmercury production and bioaccumulation in paddy soils: insights from soil-derived dissolved organic matter. J Environ Sci

  • Zhao XL, Wang DY (2010) Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L.). J Environ Sci 22(8):1184–1188

    Article  CAS  Google Scholar 

  • Zhao T, Yu Z, Zhang J, Qu L, Li P (2018) Low-thermal remediation of mercury-contaminated soil and cultivation of treated soil. Environ Sci Pollut Res Int 25(24):24135–24142

    Article  CAS  Google Scholar 

  • Zhao AQ, Gao LY, Chen BQ, Feng L (2019) Phytoremediation potential of Miscanthus sinensis for mercury-polluted sites and its impacts on soil microbial community. Environ Sci Pollut R 26(34):34818–34829

    Article  CAS  Google Scholar 

  • Zhao L, Meng B, Feng XB (2020) Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotoxicol Environ Saf 195:110462

    Article  CAS  Google Scholar 

  • Zhou X (2021) Application of pennisetum americanum and soil conditioning technology in the safe use and remediation of mercury contaminated farmland.(in Chinese with English abstract). Guizhou university

  • Zhou YT, Aamir M, Liu K, Yang FX, Liu WP (2018) Status of mercury accumulation in agricultural soil across China: spatial distribution, temporal trend, influencing factor and risk assessment. Environ Pollut 240:116–124

    Article  CAS  Google Scholar 

  • Zhu HK, Zhong H, Fu FJ, Zeng Z (2015) Incorporation of decomposed crop straw affects potential phytoavailability of mercury in a mining-contaminated farming soil. Bull Environ Contam Toxicol 95(2):254–259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (U1612442, 42007305, 41763017, 22166009), Science and Technology Project of Guizhou Province (QKHJC[2020]1Y187; QKHZC[2020]4Y031) and Fund for Newly-enrolled Talent of Guizhou University (Guidarenjihezi (2019)64). We would also thank Professor Yongmin Wang for grammar corrections.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Funding for open access charge: Universidade de Santiago de Compostela/CISUG. All data generated or analysed during this study is included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, D., Zhou, X., He, T. et al. Remediation of Mercury-Polluted Farmland Soils: A Review. Bull Environ Contam Toxicol 109, 661–670 (2022). https://doi.org/10.1007/s00128-022-03544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03544-0

Keywords

Navigation