Skip to main content
Log in

Forward osmosis performance of thin film composite membrane composed of electrospun polysulfone fiber coated by Fe3O4/fCNT-embedded polyamide active layer

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Thin film composite (TFC) membranes formed by polysulfone fibers (PSFs) substrates and polyamide (PA) active layers were investigated and their water flux and salt rejection were assessed through forward osmosis (FO) process. The PSFs substrates were fabricated by single/dual-nozzle electrospinning method with average diameter of 0.49 to 0.59 µm. Functionalized carbon nanotubes (fCNTs) were also prepared and equipped with Fe3O4 particles. The formation of Fe3O4/fCNT hybrid was confirmed by SEM and XRD analyzes. The PA active layer was coated on the PSFs substrate via interfacial polymerization between m-phenylenediamine and trimesoyl chloride. The 0, 50, 100, 200, and 500 ppm of Fe3O4/fCNT hybrid were embedded in PA active layer during the IP process, and the obtained membranes were characterized by FTIR, EDS, XRD, SEM, AFM, and BET analyses. The water contact angle results showed that the hydrophilicity of TFC membranes was increased by increasing the concentration of Fe3O4/fCNT in the PA active layer. The experimental results also revealed that the water flux and salt rejection could be affected by the Fe3O4/fCNT concentration within the PA active layer and the type of PSFs substrate. When compared to the single-nozzle, the FO results confirmed that higher water flux and salt rejection could be achieved by dual-nozzle electrospun PSFs membranes. By using 200 ppm of Fe3O4/fCNT in the active layer, the maximum water flux of 25.0 and 27.4 L·m−2·hr−1 was achieved by the single and dual-nozzle electrospun TFC membranes, respectively. In addition, the FO results indicated that, with the maximum rejections of 90% and 94% for Na2SO4 and NaCl, the higher the Fe3O4/fCNT concentration in the PA active layer, the higher the salt rejection of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Lutchmiah, A. Verliefde, K. Roest, L. C. Rietveld and E. Cornelissen, Water Res., 58, 179 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. S. Sahebi, M. Sheikhi, B. Ramavandi, S. Zhao, J. Baniasadi, N. Fadaie and T. Mohammadi, Chem. Eng. Res. Des., 160, 326 (2020).

    Article  CAS  Google Scholar 

  3. T.-S. Chung, S. Zhang, K. Y. Wang, J. Su and M. M. Ling, Desalination, 287, 78 (2012).

    Article  CAS  Google Scholar 

  4. J. Wang and X. Liu, J. Cleaner Prod., 280, 124354 (2021).

    Article  CAS  Google Scholar 

  5. B. E. Logan and M. Elimelech, Nature, 488, 313 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. N. K. Rastogi, Crit. Rev. Food Sci. Nutr., 56, 266 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin and M. Elimelech, Desalination, 356, 271 (2015).

    Article  CAS  Google Scholar 

  8. D. Li, Y. Yan and H. Wang, Prog. Polym. Sci., 61, 104 (2016).

    Article  CAS  Google Scholar 

  9. L. Miao, T. Jiang, S. Lin, T. Jin, J. Hu, M. Zhang, Y. Tu and G. Liu, Mater. Des., 191, 108591 (2020).

    Article  CAS  Google Scholar 

  10. S. R. Razavi, A. Shakeri, S. M. Mirahmadi Babaheydari, H. Salehi and R. G. H. Lammertink, Chem. Eng. Res. Des., 161, 232 (2020).

    Article  CAS  Google Scholar 

  11. N.-N. Bui, M. L. Lind, E. M. V. Hoek and J. R. McCutcheon, J. Membr. Sci., 385–386, 10 (2011).

    Article  CAS  Google Scholar 

  12. Y. Zhang, T. Mu, M. Huang, G. Chen, T. Cai, H. Chen, L. Meng and X. Luo, J. Membr. Sci., 595, 117425 (2020).

    Article  CAS  Google Scholar 

  13. S. Kim, X. Lin, R. Ou, H. Liu, X. Zhang, G. P. Simon, C. D. Easton and H. Wang, J. Mater. Chem. A, 5, 1533 (2017).

    Article  CAS  Google Scholar 

  14. S. Yuan, G. Zhang, J. Zhu, N. Mamrol, S. Liu, Z. Mai, P. Van Puyvelde and B. Van der Bruggen, J. Mater. Chem. A, 8, 3238 (2020).

    Article  CAS  Google Scholar 

  15. M. J. Park, R. R. Gonzales, A. Abdel-Wahab, S. Phuntsho and H. K. Shon, Desalination, 426, 50 (2018).

    Article  CAS  Google Scholar 

  16. S. Akbari and M. Peyravi, Chem. Eng. Res. Des., 162, 94 (2020).

    Article  CAS  Google Scholar 

  17. Z. C. Ng, W. J. Lau, T. Matsuura and A. F. Ismail, Chem. Eng. Res. Des., 165, 81 (2021).

    Article  CAS  Google Scholar 

  18. W. Lau, A. Ismail, N. Misdan and M. Kassim, Desalination, 287, 190 (2012).

    Article  CAS  Google Scholar 

  19. M. Dalwani, Thin film composite nanofiltration membranes for extreme conditions, PhD Thesis, University of Twente, Enschede (Netherlands) (2011).

    Google Scholar 

  20. W. Wang, Y. Guo, M. Liu, X. Song and J. Duan, Korean J. Chem. Eng., 37, 1573 (2020).

    Article  CAS  Google Scholar 

  21. R. R. Darabi, M. Peyravi, M. Jahanshahi and A. A. Qhoreyshi Amiri, Korean J. Chem. Eng., 34, 2311 (2017).

    Article  CAS  Google Scholar 

  22. S. F. Seyedpour, A. Rahimpour, A. A. Shamsabadi and M. Soroush, Chem. Eng. Res. Des., 139, 321 (2018).

    Article  CAS  Google Scholar 

  23. R. Ramezani Darabi, M. Peyravi and M. Jahanshahi, Chem. Eng. Res. Des., 145, 85 (2019).

    Article  CAS  Google Scholar 

  24. N. Niksefat, M. Jahanshahi and A. Rahimpour, Desalination, 343, 140 (2014).

    Article  CAS  Google Scholar 

  25. Y. Gong, S. Gao, Y. Tian, Y. Zhu, W. Fang, Z. Wang and J. Jin, J. Membr. Sci., 600, 117874 (2020).

    Article  CAS  Google Scholar 

  26. M. Pejman, M. D. Firouzjaei, S. A. Aktij, P. Das, E. Zolghadr, H. Jafarian, A. A. Shamsabadi, M. Elliott, M. R. Esfahani, M. Sangermano, M. Sadrzadeh, E. K. Wujcik, A. Rahimpour and A. Tiraferri, J. Membr. Sci., 611, 118352 (2020).

    Article  CAS  Google Scholar 

  27. M. Rahmat and P. Hubert, Compos. Sci. Technol., 72, 72 (2011).

    Article  CAS  Google Scholar 

  28. S.-M. Xue, Z.-L. Xu, Y.-J. Tang and C.-H. Ji, ACS Appl. Mater. Interfaces, 8, 19135 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. L. Jia, X. Zhang, J. Zhu, S. Cong, J. Wang, J. Liu and Y. Zhang, Environ. Sci. Water Res. Technol., 5, 1412 (2019).

    Article  CAS  Google Scholar 

  30. E.-S. Kim, G. Hwang, M. Gamal El-Din and Y. Liu, J. Membr. Sci., 394–395, 37 (2012).

    Article  CAS  Google Scholar 

  31. Y. T. Chew and W. F. Yong, Chem. Eng. Res. Des., 172, 135 (2021).

    Article  CAS  Google Scholar 

  32. M. Amini, M. Jahanshahi and A. Rahimpour, J. Membr. Sci., 435, 233 (2013).

    Article  CAS  Google Scholar 

  33. J.-G. Gai and X.-L. Gong, J. Mater. Chem. A, 2, 425 (2014).

    Article  CAS  Google Scholar 

  34. Y. Wang, X. Li, C. Cheng, Y. He, J. Pan and T. Xu, J. Membr. Sci., 498, 30 (2016).

    Article  CAS  Google Scholar 

  35. S. Pourjafar, A. Rahimpour and M. Jahanshahi, J. Ind. Eng. Chem., 18, 1398 (2012).

    Article  CAS  Google Scholar 

  36. M. Z. Razali, H. Abdullah and I. Asaahari, Int. J. Photoenergy, 2015, 501978 (2015).

    Article  CAS  Google Scholar 

  37. M. Moazzen, A. Mousavi Khaneghah, N. Shariatifar, M. Ahmadloo, I. Eş, A. N. Baghani, S. Yousefinejad, M. Alimohammadi, A. Azari, S. Dobaradaran, N. Rastkari, S. Nazmara, M. Delikhoon and G. Jahed Khaniki, Arabian J. Chem., 12, 476 (2019).

    Article  CAS  Google Scholar 

  38. H. Sadegh, R. Shahryari-ghoshekandi and M. Kazemi, Int. Nano Lett., 4, 129 (2014).

    Article  CAS  Google Scholar 

  39. R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna, S. Tabe and T. Matsuura, J. Membr. Sci., 289, 210 (2007).

    Article  CAS  Google Scholar 

  40. S. Sridhar, B. Smitha, S. Mayor, B. Prathab and T. M. Aminabhavi, J. Mater. Sci., 42, 9392 (2007).

    Article  CAS  Google Scholar 

  41. M. Kwong, A. Abdelrasoul and H. Doan, Results Mater., 2, 100021 (2019).

    Article  Google Scholar 

  42. W. Lu, J. Li, Y. Sheng, X. Zhang, J. You and L. Chen, J. Colloid Interface Sci., 505, 1134 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. T. Virtanen, G. Rudolph, A. Lopatina, B. Al-Rudainy, H. Schagerlöf, L. Puro, M. Kallioinen and F. Lipnizki, Sci. Rep., 10, 3427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. X. Zhao, J. Ma, Z. Wang, G. Wen, J. Jiang, F. Shi and L. Sheng, Desalination, 303, 29 (2012).

    Article  CAS  Google Scholar 

  45. H. Zarrabi, M. E. Yekavalangi, V. Vatanpour, A. Shockravi and M. Safarpour, Desalination, 394, 83 (2016).

    Article  CAS  Google Scholar 

  46. H. Deng, Y. Xu, Q. Chen, X. Wei and B. Zhu, J. Membr. Sci., 366, 363 (2011).

    Article  CAS  Google Scholar 

  47. Q. P. Pham, U. Sharma and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Norouzi.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2022_1135_MOESM1_ESM.pdf

Forward osmosis performance of thin film composite membrane composed of electrospun polysulfone fiber coated by Fe3O4/fCNT-embedded polyamide active layer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiaghaee, S.F., Bozorg, A. & Norouzi, M. Forward osmosis performance of thin film composite membrane composed of electrospun polysulfone fiber coated by Fe3O4/fCNT-embedded polyamide active layer. Korean J. Chem. Eng. 39, 2405–2413 (2022). https://doi.org/10.1007/s11814-022-1135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1135-y

Keywords

Navigation